

	Home
	Timetable and lecture rooms

	Lab slides

	News

	Office hours

	References
	Part A References

	Part B References page

	Editors

	Exams
	Past exams

	Exam modalities

	Expectations

	Grading

	Exams FAQ

	Exams How To
	How to edit and run

	Debugging

	Acknowledgements

	Slides 2021/22
	Part A

	Lab A.1
	Links

	Lab A.2

	Lab A.3

	Lab A.4
	(sets)

	Dictionaries

	Conditionals

	only for the pros

	Lab A.5
	In class:

	At home:

	Lab A.6
	In class:

	At home:

	Lab A.7
	In class:

	Lab A.8
	In class:

	At home:

	Lab A.9
	Looking at the midterm

	In class:

	At home:

	Lab A.10
	In class:

	At home:

	Lab A.11
	Looking at the midterm

	In class:

	At home:

	Lab B.1

	Lab B.2
	OOP

	Indexing

	Lab B.3

	Lab B.4

	Lab B.5

	Lab B.6

	Lab B.7

	Lab B.8

	Lab B.9

	Past Exams
	Data science
	Exam - Wed 31, Aug 2022
	Download exercises and solutions

	Part A - I CHING Divination (32 points)

	The dataset

	1. load_db (14 points)

	2. divine (10 points)

	3. plot_divination (8 points)

	Part B (32 points)

	B1.1 Complexity (8 points)

	B1.2 Graphs (8 points)

	B2. chains (8 points)

	B3 linked list pivot (8 points)

	Exam - Tue 12, Jul 2022
	Download exercises and solutions

	Part A - Music Sequencer

	A1 parse_melody

	A2 parse_tunes

	A3 plot_tune

	Part B

	B1.1 Theory

	B1.2 complexity

	B2 BinTree same_rec

	B3 GenericTree follow

	Exam - Wed 08, Jun 2022
	Download exercises and solutions

	A. Trans-Atlantic Slave Trade
	A1 read_trade

	A2 Deportation

	A3 The time to stop

	B1.1 Theory

	B1.2 BFS

	B2 BinaryTree is_heap_stack

	B3 GenericTree rightmost

	Exam - Wed 09, Feb 2022
	Download exercises and solutions

	Part A - Zoom surveillance
	CSV format

	A1 time24

	A2 load

	A3.1 duration

	A3.2 calc_stats

	Part B

	B1 Theory
	B1.1 myfun

	B 1.2 nlogn

	B2 flatv

	B3 univalued_rec

	Exam - Wed 12, Jan 2022
	Download exercises and solutions

	Part A - Prezzario

	A1 extract_bounds

	A2 extract_product

	A3 plot_product

	Part B

	B1 Theory

	B1.1

	B1.2

	B2 find_couple

	B3 swap

	Midterm B- Thu 16, Dec 2021
	Download exercises and solutions

	B1 Theory

	B1.1 complexity

	B1.2 postfix

	B2 norep

	B3 family_sum_rec

	Exam - Fri 12, Nov 2021
	Download exercises and solutions

	Part A - Mexican Drug Wars

	Attacks during elections

	load_mexico

	show_attacks

	cartels

	Midterm sim - Fri 05, Nov 2021
	Download exercises and solutions

	Part A - Terence Hill and Bud Spencer movies

	The files

	load

	save_table

	show_graph

	Exam - Mon 06, Sep 2021
	Download exercises and solutions

	Part A - I CHING Divination

	A1 load_db

	A2 divine

	A3 plot_divination

	Part B

	B1 Theory
	B1.1 Complexity

	B1.2 nlogn

	B2 Train race

	B3 linked algebra

	Exam - Mon 12, Jul 2021
	Download exercises and solutions

	Part A - DOOM

	A1 parse_map

	A2 simulate

	A3 plot_map

	Part B

	B1 Theory
	B1.1 Complexity

	B1.2 Hash

	B2 PyraStack

	B3 union_rec

	Exam - Fri 11, Jun 2021
	Download exercises and solutions

	Part A - Trans-Atlantic Slave Trade

	A1 read_trade

	A2 Deportation

	A3 The time to stop

	Part B

	B1 Theory
	B1.1 Complexity

	B1.2 Graph

	B2 - is_heap_stack

	B3 - sepel

	Exam - Wed 10, Feb 2021
	Download exercises and solutions

	Part A - Wikispeedia

	A1 filter_back

	A2 load_db

	A3 calc_stats

	A4 plot_network

	Part B

	B1.1 Theory - Complexity

	B1.2 Theory - BST

	B2 Reconstruct BinaryTree

	B3 Marvelous

	Exam - Tue 14, Jan 2021
	Download exercises and solutions

	Part A - Witchcraft

	A1 parse_bool_cols

	A2 fix_date

	A3 parse_db

	A4 plot_cases

	Part B

	B1.1 Theory - Complexity

	B1.2 Theory - Graph

	B2 Bank

	B2.1 constructor, log and pos

	B2.2 revert

	B2.3 max_interval

	Midterm B - Wed 16, Dec 2020
	Download exercises and solutions

	Introduction
	What to do

	B1 Theory
	B1.1. complexity

	B1.2 dag topsort

	B2 LinkedList pivot

	B3 swap_stack

	B4 family_sum_rec

	Midterm A - Fri 06, Nov 2020
	Download exercises and solutions

	Music Sequencer

	1. parse_melody

	2. parse_tunes

	3. sequencer

	4. plot_tune

	Midterm Sim - Mon 02, Nov 2020
	Download exercises and solutions
	What to do

	Part A - Galactic Love

	parse_stars

	plot_stars 1

	plot_stars 2 - new_center

	parse_zodiac

	plot_love

	Exam - Mon 24, Aug 2020
	Download exercises and solutions

	Introduction
	What to do

	Part A - Prezzario
	Pompa completa a motore Example

	A1 extract_bounds

	A2 extract_product

	A3 plot_product

	Part B

	B1 Theory
	B1.1 complexity

	B1.2 describe

	B2 couple_sort

	B3 schedule_rec

	Exam - Fri 17, Jul 2020
	Download exercises and solutions

	Introduction
	What to do

	Part A - NACE codes
	Sections

	Section detail

	Specifications

	NACE CSV

	A1 Extracting codes

	A1.1 is_nace

	A1.2 extract_codes

	A2 build_db

	A3 plot

	Part B
	B1.1 complexity

	B1.2 describe

	B2 - OfficeQueue

	B2.1 - time_to_service
	Services not required by any client

	B2.2 split

	Exam - Tue 16, Jun 2020
	Download exercises and solutions

	Introduction
	What to do

	Part A - Zoom surveillance
	CSV format

	A1 time24

	A2 load

	A3.1 duration

	A3.2 calc_stats

	A4 viz

	Part B

	B1 Theory
	B1.1 complexity

	B1.2 describe

	B2 - LinkedList slice
	Special cases

	B3 BinaryTree prune_rec

	Exam - Mon 10, Feb 2020
	Download exercises and solutions

	Introduction
	What to do

	Part A - Wordnet

	A1 parse_db
	Field description

	implement parse_db

	A2 to_adj
	Check results

	A.3 hist

	Part B

	B1 Theory
	B1.1 complexity

	B1.2 graph visits

	B2 ItalianQueue v2

	B2.1 enqueue

	B2.2 dequeue

	Exam - Thu 23, Jan 2020
	Download exercises and solution

	Introduction
	What to do

	Part A

	Metamath
	Metamath db

	A.1 Metamath db

	A.2 Metamath proof
	Checking proof
	Overview plot

	Detail plot

	A.3 Metamath top statements
	A3.1 histogram

	A3.2 print list

	Part B

	B1 Theory
	B1.1 my_fun

	B1.2 differences

	B2 plus_one

	B3 add_row

	Midterm B - Fri 20, Dec 2019
	Download exercises and solution

	Introduction
	What to do

	Part B

	B1 Theory
	B1.1 Complexity

	B1.2 Data structure choice

	B2 LinkedList

	B2.1 rotate

	B2.2 rotaten

	B3 Binary trees

	B3.1 sum_leaves_rec

	B3.2 leaves_stack

	Midterm - Thu 07, Nov 2019
	Download exercises and solution

	Introduction
	What to do

	Part A - Town events

	A.1 leap_year

	A.2 full_date

	A.3 partial_date

	A.4 parse_dates_and

	A.5 Fake news generator

	Midterm sim - Tue 31, October 2019
	Introduction

	Part A - EURES Job Offers

	MOVED TO en.softpython.org/pandas/eures-jobs-sol.html

	Exam - Mon 26, Aug 2019
	Download exercises and solution

	Introduction
	What to do

	Part A - University of Trento staff
	A1 calc_uid_to_abbr

	A2.1 calc_prof_roles

	A2.2 plot_profs

	A3.1 calc_roles

	A3.2 plot_roles

	A4.1 calc_shared

	A4.2 plot_shared

	Part B

	B1 Theory

	B2 Backpack
	B2.1 class

	B2.2 remove

	B.3 Concert
	B3.1 dequeue
	Special dequeue case: broken group

	Exam - Tue 02, July 2019
	Download exercises and solution

	Introduction
	Grading

	Valid code

	How to edit and run

	Debugging

	What to do

	Part A

	A1 Botteghe storiche
	A1.1 rank_categories

	A1.2 plot

	A1.3 enrich

	A2 dump

	Part B

	B1 Theory

	B2 Linked List sorting
	B2.1 bubble_sort

	B2.2 merge

	B3 Stacktris
	B3.1 _shorten

	B3.2 drop1

	B3.3 drop2h

	Exam - Mon 10, Jun 2019
	Download exercises and solution

	Introduction
	What to do

	Part A

	A1 ITEA real estate
	A1.1 calc_types_hist

	A1.2 calc_types_series

	A1.3 Real estates plot

	A2 Air quality

	Part B

	B1 Theory

	B2 WStack
	B2.1 implement class WStack

	B2.2 accumulate

	B3 GenericTree

	B3.1 is_triangle

	B3.2 has_triangle

	Exam - Wed 13, Feb 2019
	Download exercises and solution

	Introduction
	What to do

	Part A - Bus network visualization
	Colors and additional attributes

	load_stops

	A1 extract_routes

	A2 to_int_min

	A3 get_legend_edges

	A4 calc_nx

	A5 color_hubs

	A6 plot_timings

	Part B

	B.1 Theory

	B2 Company queues
	B2.1 add_employee

	B2.2 add_task

	B2.2 work

	B3 GenericTree

	B3.1 fill_left

	B3.2 follow

	Exam - Wed 23, Jan 2019
	Download exercises and solution
	What to do

	Part A

	A.1 table_to_adj

	A.2 bus stops

	Part B

	B.1 Theory

	B.2 Linked List flatv

	B.3 Generic Tree rightmost

	Midterm - Thu 10, Jan 2019
	Download exercises and solution
	What to do

	Introduction

	B1 Theory

	B2 Gaps linked list

	B3 Tasks stack
	B3.1 do

	B3.2 do_level

	B4 Exits graph
	B4.1 cp

	B4.2 exits

	Midterm - Fri 16 Nov 2018
	Download exercises and solution

	Introduction
	What to do

	A1 union

	A2 surjective
	A3 ediff

	Midterm Sim - Tue 13, Nov 2018
	Download exercises and solution

	Introduction
	What to do

	1. matrices
	1.1 fill

	1.2 lab

	2. phones
	2.1 canonical

	2.2 prefix

	2.3 hist

	2.4 display calls by prefixes

	2017-18 (QCB)

	2016-17 (QCB)

	

	Part A
	Installation
	Visual Studio Code

	The debugger

	VS Code - collaborative coding

	VS Code - Sharing test runs

	Python basics
	MOVED TO en.softpython.org/basics/basics-sol.html

	Strings
	MOVED TO https://en.softpython.org/#strings

	Lists
	MOVED TO https://en.softpython.org/#lists

	Tuples
	MOVED TO https://en.softpython.org/tuples/tuples-sol.html

	Sets
	MOVED TO https://en.softpython.org/sets/sets1-sol.html

	Dictionaries
	MOVED TO https://en.softpython.org/#dictionaries

	Control flow
	MOVED TO https://en.softpython.org/#control-flow

	Functions
	Download exercises zip

	Introduction
	What to do

	What is a function ?

	Namespace and variable scope

	Argument passing
	Positional arguments

	Passing arguments by keyword

	Specifying default values

	Simple exercises
	sum2

	comparep

	comparer

	even

	gre

	is_vocal

	sphere_volume

	ciri

	age

	Verify comprehension
	gre3

	final_price

	arrival_time

	Lambda functions
	Exercises: lambdas

	apply_borders

	process

	Errors and testing
	Testing
	Where Is Your Software?

	even_numbers example
	Let’s add assertions

	Error kinds
	Error kind a) An external user misuses you program.

	Error kind b): Your code is just plain wrong

	Testing with Unittest
	Running tests

	When tests don’t run

	Adding tests

	Exercise: boundary cases

	Exercise: expecting assertions

	Exercise: good tests

	Running unittests in Visual Studio Code

	TROUBLESHOOTING

	Functional programming

	Matrices: lists
	Moved to https://en.softpython.org/matrices-lists/matrices-lists1-sol.html

	Data formats
	MOVED TO https://en.softpython.org/formats/formats-sol.html

	Matrices: numpy
	Moved to https://en.softpython.org/matrices-numpy/matrices-numpy-sol.html

	Visualization
	Moved to https://en.softpython.org/visualization/visualization-sol.html

	Pandas
	Moved to https://en.softpython.org/pandas/pandas1-sol.html

	Binary relations
	MOVED TO https://en.softpython.org/binary-relations/binary-relations-sol.html

	Graph formats
	Moved to https://en.softpython.org/formats/formats4-graph-sol.html

	Part B
	OOP
	OOP
	Download exercises zip

	What to do

	1. Abstract Data Types (ADT) Theory
	1.1. Intro

	1.2. Complex number theory

	1.3. Datatypes the old way

	1.4. Finding the pattern

	1.5. Object Oriented Programming

	2. ComplexNumber class
	2.1. Class declaration

	2.2. Constructor __init__

	2.3. Defining methods
	2.3.1 phase

	2.3.2 log

	2.3.3 __str__ for printing

	2.4. ComplexNumber code skeleton

	2.5. Complex numbers magnitude

	2.6. Complex numbers equality

	2.7. Complex numbers isclose

	2.8. Complex numbers addition

	2.9. Adding a scalar

	2.10. Complex numbers multiplication

	3. MultiSet

	3.1 __init__ add and get

	3.2 removen

	4. Challenges

	OOP Matrix Challenge
	Download exercises zip

	What to do

	DenseMatrix

	Constructors and printing
	Constructor as list of lists

	str and repr

	constructor as list of triplets

	shape

	Brackets operator

	nonzero

	isclose

	Equality

	Sum

	Multiplication
	Matrix vector multiplication

	Vector matrix multiplication

	Matrix matrix multiplication

	SparseMatrix

	Sparse constructors and printing

	Sparse shape

	Sparse Brackets operator

	Sparse nonzero

	Sparse isclose

	Sparse equality

	Sparse sum

	Sparse multiplication
	Sparse matrix vector multiplication

	Sparse vector matrix multiplication

	Indexing
	Download exercises zip

	1. Exercise - chains
	1.1 has_duplicates

	1.2 chain

	2. Exercise - Bank
	2.1 bank constructor, log and pos

	2.2 bank revert

	2.3 bank max_interval

	Recursion
	simple functional programming
	SimpleFP - how-to

	SimpleFP - variable assignment

	SimpleFP - list creation

	SimpleFP - boxing

	SimpleFP - concatenation

	SimpleFP - accessing list elements

	SimpleFP - slicing

	SimpleFP - minimal instruction set

	SimpleFP - functions and conditionals

	SimpleFP - recursion

	Simple FP - Example - scount

	Simple FP - debugging

	SimpleFP: a recursion scheme

	Example - sdouble

	Exercise - debug double

	Exercise - sfilter_even

	Exercise - smerry

	Exercise - ssum

	Exercise - smin

	Exercise - ssearch

	Exercise - sbin_search

	Exercise - szip

	Exercise - sunnest

	Exercise - sfib

	Exercise - sall

	Exercise - srev

	Exercise - spalindrome

	Exercise - snest

	Exercise - spalace

	Exercise - srep

	Exercise - ssortin
	Continue

	accumulators and indeces
	Example - adouble

	Exercise - debug adouble

	Exercise - afilter_even

	Exercise - amerry

	Exercise - afib

	Exercise - asearch

	Exercise - abin_search

	Exercise - azip

	Exercise - aunnest

	Exercise - arev

	Exercise - apalindrome

	Exercise - anest

	Exercise - apalace

	Exercise - arep

	Exercise - asortin

	Exercise - ahist

	Exercise - agap

	Continue

	divide and conquer
	Managing solutions

	Divide and conquer - SimpleFP style
	Example - dsdouble

	Exercise - debug dsdouble

	Exercise - dssum

	Exercise - dsmin

	Exercise - dszip

	Exercise - dsunnest

	Exercise - dsall

	Exercise - dsrev

	Exercise - dsrep

	Divide and conquer - Accumulator style
	Example - dacount

	Example - dadouble

	Exercise - debug dadouble

	Exercise - dahist

	TODO will add more

	More exercises

	Continue

	challenges
	Challenge - Cthulhu

	Challenge - Ghatanothoa

	Challenge - Hastur

	Challenge - Tsathoggua

	Challenge - Yig

	Challenge - Shub-Niggurath

	Challenge - Shoggoth

	Challenge - Azathoth

	References

	Algorithm analysis
	Introduction

	List performance
	Fast or not?

	Sublist iteration performance

	Some formulas

	Lists - exercises
	Exercise - rollsroyce

	Exercise - honda

	Exercise - lamborghini

	Exercise - maserati

	Exercise - toyota

	Exercise - mercedes

	Exercise - acura

	Exercise - alfaromeo

	Exercise - jeep

	Exercise - chevrolet

	Exercise - kia

	Exercise - aston_martin

	Exercise - subaru

	Exercise - dodge

	Exercise - lotus

	Exercise - jaguar

	Exercise - hyundai

	Exercise - buick

	Exercise - saab

	Sets performance

	Sets - exercises
	Exercise - land_rover

	Exercise - volkswagen

	Exercise - pontiac

	Exercise - volvo

	Exercise - chrysler

	Dictionaries performance

	Dictionaries - exercises
	Exercise - tesla

	Exercise - bmw

	Exercise - nissan

	Exercise - ferrari

	Exercise - bentley

	Exercise - mclaren

	Exercise - fiat

	Exercise - mustang

	Recursion
	The Master Theorem

	Recursion - exercises
	Exercise - yamaha

	Exercise - cadillac

	Exercise - ducati

	Analysis - more exercises

	Sorting
	intro
	Download exercises zip

	Introduction
	References

	What to do

	Exercises

	1 Selection Sort
	1.1 Implement swap

	1.2 Implement argmin

	1.3: Full selection_sort

	2 Insertion sort

	3 Merge sort
	Taking last element
	Reversing a list

	Removing last element with .pop()

	Costly internal del

	Costly internal pop

	3.1 merge 1

	3.2 merge2

	4 quick sort
	4.1 pivot

	4.2 quicksort and qs

	5 SwapArray
	5.1 is_sorted

	5.2 max_to_right

	5.3 swapsort

	Challenges

	challenges
	Download exercises zip

	Crime parade

	McFat’s

	Partitocracy

	Stacks
	Download exercises zip

	0. Introduction
	References

	What to do

	1. CappedStack
	CappedStack Examples

	Capped Stack basic methods

	1.1 __init__

	1.2 cap

	1.3 size

	1.4 __str__

	1.5 is_empty

	1.6 push

	1.7 peek

	1.8 pop

	1.9 peekn

	1.10 popn

	1.11 set_cap

	2. SortedStack
	2.1 transfer

	2.2 merge

	3. WStack
	3.1 implement class WStack

	3.2 accumulate

	4. Backpack
	4.1 class

	4.2 remove

	5. Train race

	6. PyraStack

	7. Tasks
	7.1 do

	7.2 do_level

	8. Stacktris
	8.1 _shorten

	8.2 drop1

	6.3 drop2h

	Linked lists
	intro
	Download exercises zip

	0 Introduction
	References

	What to do

	0.1 Initialization

	0.2 Growing

	0.3 Visiting

	1 v1: a slow LinkedList
	1.a) Testing

	1.b) Differences with the book

	1.c) Please remember…

	2 v2 faster size
	2.1 Save a copy of your work

	2.2. Improve size

	3 v3 Faster append
	3.1 Save a copy of your work

	3.2 add _last field

	3.3 add method skeleton

	3.4 test driven development

	3.4.1 LastTest

	3.4.2 improve myAssert

	3.5 update methods that mutate the LinkedList

	3.6 Run tests

	4 v4 Go bidirectional
	4.1 Save your work

	4.2 Node backlinks

	4.3 Better str

	4.4 Modify add

	4.5 Add to_python_reversed

	4.6 Add invariant

	4.7 Modify other methods

	4.8 Run the tests

	5 EqList
	5.1 eq

	5.2 remsub

	6 Cloning
	6.1 rev

	6.2 clone

	6.3 Slice
	Special cases

	7 More exercises
	7.1 occurrences

	7.2 shrink

	7.3 dup_first

	7.4 dup_all

	7.5 mirror

	7.6 norep

	7.7 find_couple

	7.8 swap

	7.9 gaps

	7.10 flatv

	7.11 bubble_sort

	7.12 merge

	7.13 couple_sort

	7.14 linked algebra

	7.15 sepel

	7.16 linked pivot

	8 Last exercises
	8.1 rotate

	8.2 rotaten

	8.3 plus_one

	Challenge

	challenges
	Download exercises zip

	rshift

	lshift

	Queues
	intro
	Download exercises zip

	Introduction
	What to do

	1. LinkedQueue
	1.1 enqn

	1.2 deqn

	2. CircularQueue

	3. ItalianQueue
	3.1 Slow v1

	3.1.1 init

	3.1.2 Slow enqueue

	3.1.2 dequeue

	3.2 Fast v2

	3.2.1 Save a copy

	3.2.2 make it fast

	4. Supermarket queues
	CashQueue

	Supermarket

	Supermarket as a queue

	Implementation

	4.1 Supermarket size

	4.2 Supermarket dequeue

	4.3 Supermarket enqueue

	5. Shopping mall queues
	Client

	Shop

	Mall

	Mall as a queue

	Implementation

	6.1 Mall enqueue

	6.2 Mall dequeue

	6. Company queues
	7.1 add_employee

	7.2 add_task

	7.3 work

	7. Concert
	7.1 dequeue
	Special dequeue case: broken group

	8. OfficeQueue
	8.1 - time_to_service
	Services not required by any client

	8.2 split

	circular queue
	Download exercises zip

	1. Introduction

	2. Example

	3. Circular span

	4. Implement CircularQueue

	Binary Trees
	Download exercises zip
	What to do

	0. Introduction
	0.1 References

	0.2 Terminology - relations

	0.3 Terminology - levels

	0.4 Terminology - shapes

	0.2 Code skeleton

	0.3 Building trees

	0.3.1 Pointers

	0.3.2 Building with insert_left

	0.3.3 Building with bt

	1. Insertions
	1.1 insert_left

	1.2 insert_right

	2. Recursive visit
	2.1 sum_rec

	2.2 height_rec

	2.3 depth_rec

	2.4 contains_rec

	2.5 join_rec

	2.6 fun_rec

	2.7 bin_search_rec

	2.8 univalued_rec

	2.9 same_rec

	2.10 sum_leaves_rec

	2.11 schedule_rec

	2.12 paths

	2.12.1 paths_slow_rec

	2.12.2 paths_fast_rec

	3. Stack visit
	3.1 sum_stack

	3.2 height_stack

	3.3 leaves_stack

	3.4 swap_stack

	3.5 is_heap_stack

	3.6 others

	4. Queue visit

	5. Modifying the tree
	5.1 mod_sum_rec

	5.2 bin_insert_rec

	5.2 add_row

	5.3 prune_rec

	5.3 family_sum_rec

	5.4 union_rec

	5.5 reconstruct

	Generic Trees
	Download exercises zip

	0. Introduction
	What to do

	0.1 References

	0.2 Code skeleton

	0.3 Building trees

	0.3.1 Pointers

	0.3.2 Building with insert_child

	0.3.3 Building with gt

	0.4 Displaying trees side by side with str_trees

	0.5 Look at the tests

	0.6 Look at gen_tree_test.GenericTreeTest

	1 Implement basic methods
	1.1 insert_child

	1.2 insert_children

	1.3 insert_sibling

	1.4 insert_siblings

	1.5 detach_child

	1.6 detach_sibling

	1.7 detach

	1.8 ancestors

	2 Implement more complex functions
	2.1 grandchildren

	2.2 Zig Zag
	2.2.1 zig

	2.2.2 zag

	2.2.3 zigzag

	2.3 uncles

	2.4 common_ancestor

	2.5 mirror

	2.6 clone

	2.7 rightmost

	2.8 fill_left

	2.9 follow

	2.10 is_triangle

	2.11 has_triangle

	2.12 marvelous

	Graph algorithms
	Download exercises zip
	What to do

	Introduction
	0.1 Graph theory

	0.2 Directed graphs

	0.3 Serious graphs

	0.4 Code skeleton

	0.5 Building graphs

	0.5.1 Building basics

	0.5.2 dig()

	0.6 Equality

	0.7 Basic querying

	0.7.1 adj

	0.7.2 is_empty()

	0.7.3 verteces()

	0.8 Blow up your computer

	1. Implement building
	1.1 has_edge

	1.2 full_graph

	1.3 dag

	1.4 list_graph

	1.5 star_graph

	1.6 odd_line

	1.7 even_line

	1.8 quads

	1.9 pie

	1.10 Flux Capacitor

	2. Manipulate graphs
	2.1 remove_vertex

	2.2 transpose

	2.3 has_self_loops

	2.4 remove_self_loops

	2.5 undir

	3. Query graphs
	3.1 distances()

	3.2 equidistances()

	3.3 Play with dfs and bfs

	3.4 Exits graph

	3.4.1 Exits graph cp

	3.4.2 Exit graph exits

	3.5 connected components

	3.6 has_cycle

	3.7 top_sort

	Part B References
	LeetCode for Part B
	LeetCode LinkedLists

	LeetCode Queues

	LeetCode Trees

	LeetCode Graphs

	Geeks for geeks
	Geeks for geeks Queues

	Geeks for geeks Graphs

	Appendix
	Commandments
	MOVED TO https://en.softpython.org/commandments.html

	Changelog
	August 2022

	1.0 September 2020

	0.1, September 2018

	Index

Scientific Programming Lab

Data Science Master @University of Trento - AA 2021/22

 DOWNLOAD:

 Slides 2021/22

Slides 2021/22

old 2020/21 slides

Part A

Lab A.1

Thursday 23 Sep 2021

Links

lab site: sciprog.davidleoni.it [https://sciprog.davidleoni.it]

	lab presentation [https://sciprog.davidleoni.it/sciprog-dslab-slides-1.pdf] (slides)

	Installation from sciprog, with links to relevant SoftPython stuff

	in particular, try installing the toc2 extension [https://en.softpython.org/installation.html#Navigating-notebooks] for Jupyter for easy navigation

	Tools and Scripts [https://en.softpython.org/tools/tools-sol.html] on softpython: Jupyter usage and other things are described more in detail, try finishing it at home.

IMPORTANT: Friday 24 September lab is cancelled. Regular meetings will start again from Thursday 30 September.

Lab A.2

Thursday, Sep 30th, 2021

Tools recap

	Python Tutor [https://pythontutor.com/visualize.html#mode=edit]

	Visual Studio Code mention

	lab repl: https://replit.com/@DavidLeoni2/sciprog-ds-lab-2021-22

Exercises how to:

	I will update softpython / sciprog often, so please download stuff on lab day

	NOTE 1: when I ask you think what a certain code does, write down the answer, don’t just think about it - to pass the exam you must have zero uncertainties about syntax & expressions

	NOTE 2: many times I will ask you to not use if statements, even if that solution would be more elegant & short: the reason is I want you to get familiar with boolean expressions, even if they may look ugly.

Basics

In class: Basics 4 challenge [https://en.softpython.org/basics/basics4-chal.html]

The rest is left as homework:

	Basics 1 ints [https://en.softpython.org/basics/basics1-ints-sol.html]

	Basics 2 bools [https://en.softpython.org/basics/basics2-bools-sol.html]

	Basics 3 floats [https://en.softpython.org/basics/basics3-floats-sol.html]

Strings

In class: Strings 5 - Challenge [https://en.softpython.org/strings/strings5-chal.html]

The rest is left as homework:

	Strings 1 - Introduction [https://en.softpython.org/strings/strings1-sol.html]

	Strings 2 - Operators [https://en.softpython.org/strings/strings2-sol.html]

	Strings 3 - Basic methods [https://en.softpython.org/strings/strings3-sol.html]

	Strings 4 - Search methods [https://en.softpython.org/strings/strings4-sol.html]

References

	Andrea Passerini - Introduction to Python slides [http://disi.unitn.it/~passerini/teaching/2021-2022/sci-pro/slides/A01-introduction.pdf]

	Andrea Passerini - data structures slides [http://disi.unitn.it/~passerini/teaching/2021-2022/sci-pro/slides/A02-datastructures.pdf]

Lab A.3

Friday, Oct 1st, 2021

Lists:

In class: Lists 5 - Challenges [https://en.softpython.org/lists/lists5-chal.html]

The rest is left as homework:

	Lists 1 - Introduction [https://en.softpython.org/lists/lists1-sol.html]

	Lists 2 - Operators [https://en.softpython.org/lists/lists2-sol.html]

	Lists 3 - Basic methods [https://en.softpython.org/lists/lists3-sol.html]

	Lists 4 - Search methods [https://en.softpython.org/lists/lists4-sol.html]

Tuples:

In class: Tuples 2 - Challenges [https://en.softpython.org/tuples/tuples2-chal.html]

The rest is left as homework:

	Tuples 1 - Introduction [https://en.softpython.org/tuples/tuples1-sol.html]

References

	Andrea Passerini - Introduction to Python slides [http://disi.unitn.it/~passerini/teaching/2021-2022/sci-pro/slides/A01-introduction.pdf]

	Andrea Passerini - data structures slides [http://disi.unitn.it/~passerini/teaching/2021-2022/sci-pro/slides/A02-datastructures.pdf]

EXTRA challenges

Since for now I want you to focus on expressions, first challenges on softpython don’t require loops. Still, if you want, you can generalize them with following extra tasks:

	Lists - Super DUPER sorted: 2) Generalize previous approach so it works with and number of words. For this you will need cycles and/or if statements

	Lists - Toys in the Attic: 2) Generalize the previous approach. Imagine you have an attic which has an unspecified number of categories (here it’s 5 but it could 1000):

attic = [3, 'doll', 'lego', 'minicar',
 2, 'frame', 'brushes',
 4, 'bike', 'pump', 'racket', 'ball',
 2, 'vase', 'fertilizer',
 3, 'old chair','lamp deco', 'stool']

and you want to obtain a list of lists like this:

[
 ['doll','lego','minicar'],
 ['frame', 'brushes'],
 ['bike', 'pump', 'racket', 'ball'],
 ['vase','fertilizer'],
 ['old chair','lamp deco','stool']
]

(without caring about the variables toys, painting and sports)

	In this case, you can and should use cycles and/or if statements when needed.

Lab A.4

Thursday, Oct 7th, 2021

References

	Andrea Passerini - Introduction to Python slides [http://disi.unitn.it/~passerini/teaching/2021-2022/sci-pro/slides/A01-introduction.pdf]

	Andrea Passerini - data structures slides [http://disi.unitn.it/~passerini/teaching/2021-2022/sci-pro/slides/A02-datastructures.pdf]

(sets)

Passerini didn’t cover them, if you want have a look at

	Sets 1 - Intro [https://en.softpython.org/sets/sets1-sol.html]

	Sets 2 - Challenge NOTE: I moved the challenge to for 5 - sets [https://en.softpython.org/for/for5-sets-sol.html]

They may be useful to start, since keys in dictionaries behave much like sets.

Dictionaries

In class: Dictionaries 5 - Challenges [https://en.softpython.org/dictionaries/dictionaries5-chal.html]

	they always have a fixed number of inputs, but you may wish to generalize them with loops

The rest is left as homework:

	Dictionaries 1 - Introduction [https://en.softpython.org/dictionaries/dictionaries1-sol.html]

	Dictionaries 2 - Operators [https://en.softpython.org/dictionaries/dictionaries2-sol.html]

	Dictionaries 3 - methods [https://en.softpython.org/dictionaries/dictionaries3-sol.html]

	Dictionaries 4 - special dictionaries [https://en.softpython.org/dictionaries/dictionaries4-sol.html]

Conditionals

In class: if 2: challenge [https://en.softpython.org/if/if2-chal.html]

The rest is left as homework:

	if 1: intro [https://en.softpython.org/if/if1-sol.html]

References: Andrea Passerini - complex statements [http://disi.unitn.it/~passerini/teaching/2021-2022/sci-pro/slides/A03-controlflow.pdf]

only for the pros

on repl: fill_sides [https://replit.com/@DavidLeoni2/sciprog-ds-lab-2021-22#a4_4.py]

Lab A.5

Friday, Oct 8th, 2021

In class:

	for challenge [https://en.softpython.org/for/for8-chal.html]

	while challenge [https://en.softpython.org/while/while2-chal.html]

	sequences challenge [https://en.softpython.org/sequences/sequences2-chal.html]

References: Andrea Passerini - complex statements [http://disi.unitn.it/~passerini/teaching/2021-2022/sci-pro/slides/A03-controlflow.pdf]

At home:

for loops

	1. intro [https://en.softpython.org/for/for1-intro-sol.html]

	2. strings iteration [https://en.softpython.org/for/for2-strings-sol.html]

	3. lists iteration [https://en.softpython.org/for/for3-lists-sol.html]

	4. tuples iteration [https://en.softpython.org/for/for4-tuples-sol.html]

	5. sets iteration [https://en.softpython.org/for/for5-sets-sol.html]

	6. dictionaries iteration [https://en.softpython.org/for/for6-dictionaries-sol.html]

while loops: while 1. intro [https://en.softpython.org/while/while1-sol.html]

sequences: sequences 1. intro [https://en.softpython.org/sequences/sequences1-sol.html]

Lab A.6

Thursday, Oct 14th, 2021

In class:

	functions intro [https://en.softpython.org/functions/fun1-intro-sol.html]: some discussion on function categories

	functions - error handling and testing [https://en.softpython.org/functions/fun2-errors-and-testing-sol.html]: when to use them

	matrices as lists challenge [https://en.softpython.org/matrices-lists/matrices-lists3-chal.html]

	mixed structures challenge [https://en.softpython.org/mixed-structures/mixed-structures2-chal.html]

References: Andrea Passerini slides - functions [http://disi.unitn.it/~passerini/teaching/2021-2022/sci-pro/slides/A04-functions.pdf]

At home:

Functions:

	1. intro [https://en.softpython.org/functions/fun1-intro-sol.html]

	2. error handling and testing [https://en.softpython.org/functions/fun2-errors-and-testing-sol.html]

	3. on strings [https://en.softpython.org/functions/fun3-strings-sol.html]

	4. on lists [https://en.softpython.org/functions/fun4-lists-sol.html]

	5. on tuples [https://en.softpython.org/functions/fun5-tuples-sol.html]

	6. on sets [https://en.softpython.org/functions/fun6-sets-sol.html]

Matrices as lists:

	matrices 1 - intro [https://en.softpython.org/matrices-lists/matrices-lists1-sol.html]

	matrices 2 - more exercises [https://en.softpython.org/matrices-lists/matrices-lists2-sol.html]

Mixed structures:

	mixed-structures 1 - intro [https://en.softpython.org/mixed-structures/mixed-structures1-sol.html]

Lab A.7

Friday, Oct 15th, 2021

In class:

	matrices as lists challenge [https://en.softpython.org/matrices-lists/matrices-lists3-chal.html]

Lab A.8

Thursday, Oct 21st, 2021

IMPORTANT NOTE:

	today’s lab (Thursday) will start at 16:30 in b106

	on Friday 22nd there will be no lab

	next week labs restart regularly

In class:

	Line formats challenge [https://en.softpython.org/formats/formats4-chal.html] (Spam killer)

	JSON mention [https://en.softpython.org/formats/formats3-json-sol.html]

	CSV challenge [https://en.softpython.org/formats/formats4-chal.html#CSV-Challenge---Over-the-top] (Over the top)

References: Andrea Passerini slides - modules and programs [http://disi.unitn.it/~passerini/teaching/2021-2022/sci-pro/slides/A05-programs.pdf]

At home:

	Formats 1: line files [https://en.softpython.org/formats/formats1-lines-sol.html]

	Formats 2: CSV files [https://en.softpython.org/formats/formats2-csv-sol.html]

	Formats 3: JSON files [https://en.softpython.org/formats/formats3-json-sol.html]

	Language parser challenges [https://en.softpython.org/formats/formats4-chal.html#Parsing-challenge---Markdown]

Lab A.9

Thursday, Oct 28th, 2021

Looking at the midterm

	After this lab, consider trying the old Part A exams [https://sciprog.davidleoni.it/past-exams.html] which don’t display networks.

	IMPORTANT: there is a References part [https://en.softpython.org/references.html] on SoftPython, where you can find extra resource for Part A of this course. In particular, I recommend doing:

	the explicitly named exercises from Edabit and LeetCode, plus you can find more on HackerRank and Geeks for Geeks

	have a look at Foundations of Python programming book [https://en.softpython.org/references.html#Foundations-of-Python-Programming] in particular the worked projects [https://runestone.academy/runestone/books/published/fopp/index.html#project-list]

	If you struggle with programming, the stuff above is not optional!

In class:

	Numpy images [https://en.softpython.org/visualization/visualization-images-sol.html]

	Algorythm visualization challenge [https://en.softpython.org/visualization/visualization2-chal.html]

References:

Andrea Passerini - Numpy and matplotlib [https://disi.unitn.it/~passerini/teaching/2021-2022/sci-pro/slides/A08-numpy.pdf]

At home:

	Numpy 1 - intro [https://en.softpython.org/matrices-numpy/matrices-numpy1-sol.html]

	Numpy 2 - exercises [https://en.softpython.org/matrices-numpy/matrices-numpy2-sol.html]

	Visualization 1 - intro [https://en.softpython.org/visualization/visualization1-sol.html]

Lab A.10

Friday, Oct 29th, 2021

In class:

	Pandas poets challenge [https://en.softpython.org/pandas/pandas3-chal.html]

References:

Andrea Passerini - Pandas [http://disi.unitn.it/~passerini/teaching/2021-2022/sci-pro/slides/A07-pandas.pdf]

At home:

	Pandas 1: intro [https://en.softpython.org/pandas/pandas1-sol.html]

	Pandas 2: EURES case study [https://en.softpython.org/pandas/pandas2-sol.html]

Lab A.11

Thursday, Nov 4th, 2021

Today we are going to see applications, particular how to display relational data.

Note focus in Part A is just displaying, not exploration algorithms (which we will see in Part B)

First install required libraries [https://en.softpython.org/relational/relational1-intro-sol.html#Required-libraries] (graphviz, pydot, networkx)

If for some reason GraphViz doesn’t work on your system: ask/mail mail me, and in the meanwhile you could use an unholy hack on repl [https://replit.com/@DavidLeoni2/softgraphviz2#main.py] which also uses the online service Gravizo and matplotlib (you can also run it from your laptop). Just run it, wait for the thing to load all the modules, and you should see some graph - notice you might need to properly center it.

Looking at the midterm

After this lab, consider trying the remaining old Part A exams [https://sciprog.davidleoni.it/past-exams.html] which display networks.

In class:

	Relational data challenge [https://en.softpython.org/relational/relational4-chal.html]

In class try doing one exercise per type, es:

	matrices: Trichain, Bipartite (from soft import draw_mat)

	adjacency lists: Friends (from soft import draw_adj)

	networkx: Offshore (from soft import draw_nx)

At home:

	Relational data 1: intro [https://en.softpython.org/relational/relational1-intro-sol.html]

	Relational data 2: Binary relations [https://en.softpython.org/relational/relational2-binrel-sol.html]

	Relational data 3: Simple statistics [https://en.softpython.org/relational/relational3-simple-stats-sol.html] (contains also some matplotlib charts)

Lab B.1

Thursday Nov 11th, 2021

New tutoring service

by Gabriele Masina (gabriele.masina (guess what) studenti.unitn.it) has been set up on the following timetable starting from Monday 15 november until Wednesday 15 december (included)

	Mondays: 9:30-11:30 A202

	Wednesdays: 9:30-11:30 A202

Part B Focus

	complex data structures

	perfomance

How:

	big .py files

	debugging

	testing

VSCode:

From now on we will:

	only use Visual Studio Code

	only edit .py files

Read:

	Installation on sciprog

	Debugging with VSCode

	Collaborative editing with VSCode: for this year there’s hopefully no need to use it, but sometimes you might find it handy, in case see how to install sharing extension and sharing test runs

Btw, if you want you can even load jupyter notebooks (.ipynb) inside VSCode

New testing: In part B we use unittest: see errors and testing on sciprog

	in particular, DO READ TROUBLESHOOTING - you are very likely to encounter problems

Let’s go object oriented: OOP (only first part, next time we will do challenges together)

Lab B.2

Thursday Nov 18th, 2021

OOP

	Finish OOP ComplexNumber

	OOP Matrix Challenge [https://sciprog.davidleoni.it/oop/oop2-matrix-chal.html]

Indexing

Have a look at Indexing chapter: probably you will have a hard time understanding the exercises and your solution will look different from proposed ones: try asking yourself why indexing with dictionaries might save computation time

From now on, in general try avoiding:

	in operator on sequences like strings, lists, tuples: it scans the whole sequence!

	search methods (.find, .index, .remove…)

	in particular methods from strings (.replace,etc): PartB is about algorithms, not Python tricks!

	pop(k) (but pop(-1) is fine)

	needlessly using slices, they create new data structures!

Lab B.3

Friday Nov 19th, 2021

worksheets on sciprog:

	Recursion 1 - simplefp

	Recursion 2 - accumulators and indexes

NOTE: the worksheet is in progress, I will surely add material on multiple recursion

In general, when you don’t know how to tackle a recursive problem, first try the SimpleFP way and then ModAcc

Simple functional programming (SimpleFP)

	immutability

	very limited instructions set

	never re-assign variables

	always create NEW memory regions

	don’t care about performance

Recursion with modifiable accumulators (ModAcc)

	indexes instead of slicing

	extra accumulators variables

	helper functions

	you can mutate accumulators

	care more about performance

References:

	Andrea Passerini slides on programming paradigms [http://disi.unitn.it/~passerini/teaching/2021-2022/sci-pro/slides/A09-oop.pdf]

	Andrea Passerini slides on recursion theory [http://disi.unitn.it/~passerini/teaching/2021-2022/sci-pro/slides/A06-recursion.pdf]

Lab B.4

Thursday Nov 25th, 2021

I split recursion into many pages and added stuff, see Recursion 1 - simplefp, Recursion 2 - accumulators and indexes and Recursion 4 - challenges [https://sciprog.davidleoni.it/recursion/recursion4-chal.html]

Today we see:

	Recursion 3 - divide and conquer [https://sciprog.davidleoni.it/recursion/recursion3-divide.html]

	Algorithm analysis [https://sciprog.davidleoni.it/algo-analysis/algo-analysis-sol.html]

Lab B.5

Friday Nov 26th, 2021

In lab:

	More Algorithm analysis [https://sciprog.davidleoni.it/algo-analysis/algo-analysis-sol.html]

	Sorting [https://sciprog.davidleoni.it/sorting/sorting.html]

	Selection sort

	quicksort

At home:

	Other sorting (insertion sort, merge sort, …)

	Sorting challenge [https://sciprog.davidleoni.it/sorting/sorting-chal.html]

Lab B.6

Thursday Dec 2nd, 2021

In lab:

LinkedLists 1 [https://sciprog.davidleoni.it/linked-lists/linked-lists1.html]: the art of

	scanning with while

	pointers

	cutting

Please start doing exercises in Part B references [https://sciprog.davidleoni.it/references.html]

At home:

	Stacks [https://sciprog.davidleoni.it/stacks/stacks.html]: in particular, make sure to understand the Train race exercise

	Linked list2 challenges [https://sciprog.davidleoni.it/linked-lists/linked-lists2-chal.html] (will add more, also during tutoring)

Lab B.7

Friday Dec 3thrd, 2021

In lab:

	Queues 1 intro: ItalianQueue (it’s actually a LinkedList)

	Queues 2 CircularQueue

Again: Please start doing exercises in Part B references [https://sciprog.davidleoni.it/references.html]

At home: try finishing whole Queues worksheets

Lab B.8

Thursday Dec 9th, 2021

XI COMMANDMENT: Never ever search keys in a dictionary with looping!

DO NOT write code like this, it’s \(O(n)\):

for key in d:
 if key == 'searched key':
 do something ...

USE instead in operator which only takes \(O(1)\)

if 'searched key' in d:
 do something

Looping on dictionaries kills performance and in Part B is often a fatal mistake, many people still have this bad habit. Please (re) read softpython - iteration in dictionaries [https://en.softpython.org/for/for6-dictionaries-sol.html#Are-they-equivalent?---Found] and complexity - dictionaries [https://sciprog.davidleoni.it/algo-analysis/algo-analysis-sol.html#Dictionaries-performance]

Today:

	Binary trees

At home: try to finish whole Binary trees worksheet

Yet again: Please start doing exercises in Part B references [https://sciprog.davidleoni.it/references.html]

Lab B.9

Friday Dec 10th, 2021

Generic trees, at home: try to finish whole Generic trees worksheet

	Further exercise: try doing bintree exercses also on generic trees.

 Past Exams

Past Exams

Data science

NOTE: 19-20 exams are very similar to 18-19, the only difference being that you might also get an exercise on Pandas.

	Exam - Wed 31, Aug 2022
	Download exercises and solutions

	Part A - I CHING Divination (32 points)

	The dataset

	1. load_db (14 points)

	2. divine (10 points)

	3. plot_divination (8 points)

	Part B (32 points)

	B1.1 Complexity (8 points)

	B1.2 Graphs (8 points)

	B2. chains (8 points)

	B3 linked list pivot (8 points)

	Exam - Tue 12, Jul 2022
	Download exercises and solutions

	Part A - Music Sequencer

	A1 parse_melody

	A2 parse_tunes

	A3 plot_tune

	Part B

	B1.1 Theory

	B1.2 complexity

	B2 BinTree same_rec

	B3 GenericTree follow

	Exam - Wed 08, Jun 2022
	Download exercises and solutions

	A. Trans-Atlantic Slave Trade
	A1 read_trade

	A2 Deportation

	A3 The time to stop

	B1.1 Theory

	B1.2 BFS

	B2 BinaryTree is_heap_stack

	B3 GenericTree rightmost

	Exam - Wed 09, Feb 2022
	Download exercises and solutions

	Part A - Zoom surveillance

	Part B

	B1 Theory

	B2 flatv

	B3 univalued_rec

	Exam - Wed 12, Jan 2022
	Download exercises and solutions

	Part A - Prezzario

	A1 extract_bounds

	A2 extract_product

	A3 plot_product

	Part B

	B1 Theory

	B1.1

	B1.2

	B2 find_couple

	B3 swap

	Midterm B- Thu 16, Dec 2021
	Download exercises and solutions

	B1 Theory

	B1.1 complexity

	B1.2 postfix

	B2 norep

	B3 family_sum_rec

	Exam - Fri 12, Nov 2021
	Download exercises and solutions

	Part A - Mexican Drug Wars

	Attacks during elections

	load_mexico

	show_attacks

	cartels

	Midterm sim - Fri 05, Nov 2021
	Download exercises and solutions

	Part A - Terence Hill and Bud Spencer movies

	The files

	load

	save_table

	show_graph

	Exam - Mon 06, Sep 2021
	Download exercises and solutions

	Part A - I CHING Divination

	A1 load_db

	A2 divine

	A3 plot_divination

	Part B

	B1 Theory

	B2 Train race

	B3 linked algebra

	Exam - Mon 12, Jul 2021
	Download exercises and solutions

	Part A - DOOM

	A1 parse_map

	A2 simulate

	A3 plot_map

	Part B

	B1 Theory

	B2 PyraStack

	B3 union_rec

	Exam - Fri 11, Jun 2021
	Download exercises and solutions

	Part A - Trans-Atlantic Slave Trade

	A1 read_trade

	A2 Deportation

	A3 The time to stop

	Part B

	B1 Theory

	B2 - is_heap_stack

	B3 - sepel

	Exam - Wed 10, Feb 2021
	Download exercises and solutions

	Part A - Wikispeedia

	A1 filter_back

	A2 load_db

	A3 calc_stats

	A4 plot_network

	Part B

	B1.1 Theory - Complexity

	B1.2 Theory - BST

	B2 Reconstruct BinaryTree

	B3 Marvelous

	Exam - Tue 14, Jan 2021
	Download exercises and solutions

	Part A - Witchcraft

	A1 parse_bool_cols

	A2 fix_date

	A3 parse_db

	A4 plot_cases

	Part B

	B1.1 Theory - Complexity

	B1.2 Theory - Graph

	B2 Bank

	B2.1 constructor, log and pos

	B2.2 revert

	B2.3 max_interval

	Midterm B - Wed 16, Dec 2020
	Download exercises and solutions

	Introduction

	B1 Theory

	B2 LinkedList pivot

	B3 swap_stack

	B4 family_sum_rec

	Midterm A - Fri 06, Nov 2020
	Download exercises and solutions

	Music Sequencer

	1. parse_melody

	2. parse_tunes

	3. sequencer

	4. plot_tune

	Midterm Sim - Mon 02, Nov 2020
	Download exercises and solutions

	Part A - Galactic Love

	parse_stars

	plot_stars 1

	plot_stars 2 - new_center

	parse_zodiac

	plot_love

	Exam - Mon 24, Aug 2020
	Download exercises and solutions

	Introduction

	Part A - Prezzario

	A1 extract_bounds

	A2 extract_product

	A3 plot_product

	Part B

	B1 Theory

	B2 couple_sort

	B3 schedule_rec

	Exam - Fri 17, Jul 2020
	Download exercises and solutions

	Introduction

	Part A - NACE codes

	A1 Extracting codes

	A1.1 is_nace

	A1.2 extract_codes

	A2 build_db

	A3 plot

	Part B

	B2 - OfficeQueue

	B2.1 - time_to_service

	B2.2 split

	Exam - Tue 16, Jun 2020
	Download exercises and solutions

	Introduction

	Part A - Zoom surveillance

	Part B

	B1 Theory

	B2 - LinkedList slice

	B3 BinaryTree prune_rec

	Exam - Mon 10, Feb 2020
	Download exercises and solutions

	Introduction

	Part A - Wordnet

	A1 parse_db

	A2 to_adj

	A.3 hist

	Part B

	B1 Theory

	B2 ItalianQueue v2

	B2.1 enqueue

	B2.2 dequeue

	Exam - Thu 23, Jan 2020
	Download exercises and solution

	Introduction

	Part A

	Metamath

	A.1 Metamath db

	A.2 Metamath proof

	A.3 Metamath top statements

	Part B

	B1 Theory

	B2 plus_one

	B3 add_row

	Midterm B - Fri 20, Dec 2019
	Download exercises and solution

	Introduction

	Part B

	B1 Theory

	B2 LinkedList

	B2.1 rotate

	B2.2 rotaten

	B3 Binary trees

	B3.1 sum_leaves_rec

	B3.2 leaves_stack

	Midterm - Thu 07, Nov 2019
	Download exercises and solution

	Introduction

	Part A - Town events

	A.1 leap_year

	A.2 full_date

	A.3 partial_date

	A.4 parse_dates_and

	A.5 Fake news generator

	Midterm sim - Tue 31, October 2019
	Introduction

	Part A - EURES Job Offers

	MOVED TO en.softpython.org/pandas/eures-jobs-sol.html

	Exam - Mon 26, Aug 2019
	Download exercises and solution

	Introduction

	Part A - University of Trento staff

	Part B

	B1 Theory

	B2 Backpack

	B.3 Concert

	Exam - Tue 02, July 2019
	Download exercises and solution

	Introduction

	Part A

	A1 Botteghe storiche

	A2 dump

	Part B

	B1 Theory

	B2 Linked List sorting

	B3 Stacktris

	Exam - Mon 10, Jun 2019
	Download exercises and solution

	Introduction

	Part A

	A1 ITEA real estate

	A2 Air quality

	Part B

	B1 Theory

	B2 WStack

	B3 GenericTree

	B3.1 is_triangle

	B3.2 has_triangle

	Exam - Wed 13, Feb 2019
	Download exercises and solution

	Introduction

	Part A - Bus network visualization

	Part B

	B.1 Theory

	B2 Company queues

	B3 GenericTree

	B3.1 fill_left

	B3.2 follow

	Exam - Wed 23, Jan 2019
	Download exercises and solution

	Part A

	A.1 table_to_adj

	A.2 bus stops

	Part B

	B.1 Theory

	B.2 Linked List flatv

	B.3 Generic Tree rightmost

	Midterm - Thu 10, Jan 2019
	Download exercises and solution

	Introduction

	B1 Theory

	B2 Gaps linked list

	B3 Tasks stack

	B4 Exits graph

	Midterm - Fri 16 Nov 2018
	Download exercises and solution

	Introduction

	A2 surjective

	Midterm Sim - Tue 13, Nov 2018
	Download exercises and solution

	Introduction

	1. matrices

	2. phones

2017-18 (QCB)

See QCB master past exams on sciprolab2 Github [https://github.com/DavidLeoni/sciprolab2/tree/master/overlay/_static]

NOTE: Those exams are useful, but for you there will be:

	no biological examples

	less dynamic programming

	more exercises on graphs & matrices

	exercise on pandas

	custom DiGraph won’t have Visit and VertexLog classes

2016-17 (QCB)

See davidleoni.github.io/algolab/past-exams.html [https://davidleoni.github.io/algolab/past-exams.html]

WARNING: keep in mind that 2016-17 exams are for Python 2 - in this course we use Python 3

[]:

Index

	Home
	Timetable and lecture rooms

	Lab slides

	News

	Office hours

	References

	Exams

	Acknowledgements

	Slides 2021/22
	Part A

	Lab A.1

	Lab A.2

	Lab A.3

	Lab A.4

	Lab A.5

	Lab A.6

	Lab A.7

	Lab A.8

	Lab A.9

	Lab A.10

	Lab A.11

	Lab B.1

	Lab B.2

	Lab B.3

	Lab B.4

	Lab B.5

	Lab B.6

	Lab B.7

	Lab B.8

	Lab B.9

	Past Exams
	Data science

	2017-18 (QCB)

	2016-17 (QCB)

Part A

	Installation
	Visual Studio Code

	The debugger

	VS Code - collaborative coding

	VS Code - Sharing test runs

	Python basics
	MOVED TO en.softpython.org/basics/basics-sol.html

	Strings
	MOVED TO https://en.softpython.org/#strings

	Lists
	MOVED TO https://en.softpython.org/#lists

	Tuples
	MOVED TO https://en.softpython.org/tuples/tuples-sol.html

	Sets
	MOVED TO https://en.softpython.org/sets/sets1-sol.html

	Dictionaries
	MOVED TO https://en.softpython.org/#dictionaries

	Control flow
	MOVED TO https://en.softpython.org/#control-flow

	Functions
	Download exercises zip

	Introduction

	Namespace and variable scope

	Argument passing

	Simple exercises

	Verify comprehension

	Lambda functions

	Errors and testing
	Testing

	Testing with Unittest

	Functional programming

	Matrices: lists
	Moved to https://en.softpython.org/matrices-lists/matrices-lists1-sol.html

	Data formats
	MOVED TO https://en.softpython.org/formats/formats-sol.html

	Matrices: numpy
	Moved to https://en.softpython.org/matrices-numpy/matrices-numpy-sol.html

	Visualization
	Moved to https://en.softpython.org/visualization/visualization-sol.html

	Pandas
	Moved to https://en.softpython.org/pandas/pandas1-sol.html

	Binary relations
	MOVED TO https://en.softpython.org/binary-relations/binary-relations-sol.html

	Graph formats
	Moved to https://en.softpython.org/formats/formats4-graph-sol.html

Part B

	OOP
	OOP

	OOP Matrix Challenge

	Indexing
	Download exercises zip

	1. Exercise - chains

	2. Exercise - Bank

	Recursion
	simple functional programming

	accumulators and indeces

	divide and conquer

	challenges

	Algorithm analysis
	Introduction

	List performance

	Some formulas

	Lists - exercises

	Sets performance

	Sets - exercises

	Dictionaries performance

	Dictionaries - exercises

	Recursion

	Recursion - exercises

	Analysis - more exercises

	Sorting
	intro

	challenges

	Stacks
	Download exercises zip

	0. Introduction

	1. CappedStack

	2. SortedStack

	3. WStack

	4. Backpack

	5. Train race

	6. PyraStack

	7. Tasks

	8. Stacktris

	Linked lists
	intro

	challenges

	Queues
	intro

	circular queue

	Binary Trees
	Download exercises zip

	0. Introduction

	1. Insertions

	2. Recursive visit

	3. Stack visit

	4. Queue visit

	5. Modifying the tree

	Generic Trees
	Download exercises zip

	0. Introduction

	1 Implement basic methods

	2 Implement more complex functions

	Graph algorithms
	Download exercises zip

	Introduction

	1. Implement building

	2. Manipulate graphs

	3. Query graphs

	Part B References
	LeetCode for Part B

	Geeks for geeks

Appendix

	Commandments
	MOVED TO https://en.softpython.org/commandments.html

	Changelog
	August 2022

	1.0 September 2020

	0.1, September 2018

 Installation

Installation

You will need to install several pieces of software to get a working Python 3 programming environment. In this section we will install everything that we are going to need in the next few weeks.

There are many ways to write and execute Python code:

	Python interpreter [https://www.python.org/] (command line)

	Visual Studio Code [https://code.visualstudio.com/] (editor, good debugger)

	Jupyter [https://jupyter.org/] (notebook, good for experimentation and writing reports)

	Google Colab [https://colab.research.google.com/] (online, sort-of collaborative)

	repl.it [https://repl.it/languages/python3] (online, collaborative)

	Python Tutor [http://www.pythontutor.com/visualize.html#mode=edit] (online, visual debugger, only for short code)

Python 3 is available for Windows, Mac and Linux. Python3 alone is often not enough, and you will need to install extra system-specific libraries + editors like Jupyter for Part A of the course and Visual Studio Code for Part B.

To avoid hassles, especially on Win / Mac you should install some so called package manager (Linux distributions already come with a package manager). Among the many options for this course we use the package manager Anaconda for Python 3.8

	Install Anaconda for Python 3.8 [https://www.anaconda.com/products/individual#Downloads] (anaconda installer may ask you to install also visual studio code, in case accept the kind offer)

	If you didn’t in the previous point, install now Visual Studio Code, which is available for all platforms. You can read about it here [https://code.visualstudio.com/]. Downloads for all platforms can be found here [https://code.visualstudio.com/Download]

	Install Python extension for Visual Studio Code [https://marketplace.visualstudio.com/items?itemName=ms-python.python] by Microsoft

[image: image0]

	Now you can read all of Installation on SoftPython [https://en.softpython.org/installation.html] EXCEPT:

	For Mac users: for this course you don’t need to install homebrew, just install Anaconda

	For everybody: You don’t need to read Projects with virtual environments paragraph (although it’s certainly useful when you have many Python projects on your pc!)

	Jupyter and course material format is described in detail in Tools and Scripts on SoftPython [https://en.softpython.org/tools/tools-sol.html], read it!

	Finally, you can get familiar with Visual Studio Code by reading what follows. Even if we will use it only in Part B, read it anyway as it’s useful for many development tasks and supports a lot languages.

Visual Studio Code

Visual Studio Code [https://code.visualstudio.com/] is an Integrated Development Editor (IDE) for text files. It can handle many languages, Python included (python programs are text files ending in .py).

Features:

	open source

	lightweight

	used by many developers

	Python plugin is not the best, but works enough for us

Once you open the IDE Visual Studio Code you will see the welcome screen:

[image: visual studio code 94j34]

You can find useful information on this tool here [https://code.visualstudio.com/docs#vscode]. Please spend some time having a look at that page.

Once you are done with it you can close this window pressing on the “x”. First thing to do is to set the python interpreter to use. Click on View –> Command Palette and type “Python” in the text search space. Select Python: Select Workspace Interpreter as shown in the picture below.

[image: python interpreter uiu8ue]

Finally, select the Python version you want to use i.e. Python3 (if you have anaconda, it should automatically use your Anaconda environment)

Now you can click on Open Folder to create a new folder to place all the scripts you are going to create. You can call it something like “exercises”. Next you can create a new file, example1.py (.py extension stands for python).

Visual Studio Code will understand that you are writing Python code and will help you with valid syntax for your program.

Warning:

If you get the following error message:

[image: pylint iukj44]

click on Install Pylint which is a useful tool to help your coding experience.

Add the following text to your example1.py file.

[1]:

"""
This is the first example of Python script.
"""
a = 10 # variable a
b = 33 # variable b
c = a / b # variable c holds the ratio

Let's print the result to screen.
print("a:", a, " b:", b, " a/b=", c)

a: 10 b: 33 a/b= 0.30303030303030304

A couple of things worth nothing. The first three lines opened and closed by """ are some text describing the content of the script. Moreover, comments are proceeded by the hash key (#) and they are just ignored by the python interpreter. Please remember to comment your code, as it helps readability and will make your life easier when you have to modify or just understand the code you wrote some time in the past.

Please notice that Visual Studio Code will help you writing your Python scripts. For example, when you start writing the print line it will complete the code for you (if the Pylint extension mentioned above is installed), suggesting the functions that match the letters written. This useful feature is called code completion and, alongside suggesting possible matches, it also visualizes a description of the function and parameters it needs. Here is an example:

[image: code completion j3u34]

Save the file (Ctrl+S as shortcut). It is convenient to ask the IDE to highlight potential syntactic problems found in the code. You can toggle this function on/off by clicking on View –> Problems. The Problems panel should look like this

[image: problems ui4i3u4]

Visual Studio Code is warning us that the variable names a,b,c at lines 4,5,6 do not follow Python naming conventions for constants. This is because they have been defined at the top level (there is no structure to our script yet) and therefore are interpreted as constants. The naming convention for constants states that they should be in capital letters. To amend the code, you can just replace all the names with the corresponding capitalized name (i.e. A,B,C). If you do that,
and you save the file again (Ctrl+S), you will see all these problems disappearing as well as the green underlining of the variable names. If your code does not have an empty line before the end, you might get another warning “Final new line missing”. Note that these were just warnings and the interpreter in this case will happily and correctly execute the code anyway, but it is always good practice to understand what the warnings are telling us before deciding to ignore them!

Had we by mistake mispelled the print function name (something that should not happen with the code completion tool that suggests functions names!) writing printt (note the double t), upon saving the file, the IDE would have underlined in red the function name and flagged it up as a problem.

[image: errors ubgiru]

This is because the builtin function printt does not exist and the python interpreter does not know what to do when it reads it. Note that printt is actually underlined in red, meaning that there is an error which will cause the interpreter to stop the execution with a failure. Please remember that before running any piece of code all errors must be fixed.

Now it is time to execute the code. By right-clicking in the code panel and selecting Run Python File in Terminal (see picture below) you can execute the code you have just written.

[image: pythonrun iui575]

Upon clicking on Run Python File in Terminal a terminal panel should pop up in the lower section of the coding panel and the result shown above should be reported.

Saving script files like the example1.py above is also handy because they can be invoked several times (later on we will learn how to get inputs from the command line to make them more useful…). To do so, you just need to call the python intepreter passing the script file as parameter. From the folder containing the example1.py script:

python3 example1.py

will in fact return:

a: 10 b: 33 a/b= 0.30303030303030304

Before ending this section, let me add another note on errors. The IDE will diligently point you out syntactic warnings and errors (i.e. errors/warnings concerning the structure of the written code like name of functions, number and type of parameters, etc.) but it will not detect semantic or runtime errors (i.e. connected to the meaning of your code or to the value of your variables). These sort of errors will most probably make your code crash or may result in unexpected
results/behaviours. In the next section we will introduce the debugger, which is a useful tool to help detecting these errors.

Before getting into that, consider the following lines of code (do not focus on the import line, this is only to load the mathematics module and use its method sqrt):

[2]:

"""
Runtime error example, compute square root of numbers
"""
import math

A = 16
B = math.sqrt(A)
C = 5*B
print("A:", A, " B:", B, " C:", C)

#D = math.sqrt(A-C) # whoops, A-C is now -4!!!
#print(D)

A: 16 B: 4.0 C: 20.0

If you add that code to a Python file (e.g. sqrt_example.py), you save it and you try to execute it, you should get an error message as reported above. You can see that the interpreter has happily printed off the value of A,B and C but then stumbled into an error at line 9 (math domain error) when trying to compute \(\sqrt{A-C} = \sqrt{-4}\), because the sqrt method of the math module cannot be applied to negative values (i.e. it works in the domain of real numbers).

Please take some time to familiarize with Visual Studio Code (creating files, saving files etc.) as in the next practicals we will take this ability for granted.

The debugger

Another important feature of advanced Integrated Development Environments (IDEs) is their debugging capabilities. Visual Studio Code comes with a debugging tool that can help you trace the execution of your code and understand where possible errors hide.

Write the following code on a new file (let’s call it integer_sum.py) and execute it to get the result.

[3]:

""" integer_sum.py is a script to
 compute the sum of the first 1200 integers. """

S = 0
for i in range(0, 1201):
 S = S + i

print("The sum of the first 1200 integers is: ", S)

The sum of the first 1200 integers is: 720600

Without getting into too many details, the code you just wrote starts initializing a variable S to zero, and then loops from 0 to 1200 assigning each time the value to a variable i, accumulating the sum of S + i in the variable S. A final thing to notice is indentation. In Python it is important to indent the code properly as this provides the right scope for variables (e.g. see that the line S = S + 1 starts more to the right than the previous and following line
– this is because it is inside the for loop). You do not have to worry about this for the time being, we will get to this in a later practical…

How does this code work? How does the value of S and i change as the code is executed? These are questions that can be answered by the debugger.

To start the debugger, click on Debug –> Start Debugging (shortcut F5). The following small panel should pop up:

[image: debug 57874y]

We will use it shortly, but before that, let’s focus on what we want to track. On the left hand side of the main panel, a Watch panel appeared. This is where we need to add the things we want to monitor as the execution of the program goes. With respect to the code written above, we are interested in keeping an eye on the variables S, i and also of the expression S+i (that will give us the value of S of the next iteration). Add these three expressions in the watch panel (click on +
to add new expressions). The watch panel should look like this:

[image: watch 985yhf]

do not worry about the message “name X is not defined”, this is normal as no execution has taken place yet and the interpreter still does not know the value of these expressions.

The final thing before starting to debug is to set some breakpoints, places where the execution will stop so that we can check the value of the watched expressions. This can be done by hovering with the mouse on the left of the line number. A small reddish dot should appear, place the mouse over the correct line (e.g. the line corresponding to S = S + 1 and click to add the breakpoint (a red dot should appear once you click).

[image: breakpoint iu54h]

Now we are ready to start debugging the code. Click on the green triangle on the small debug panel and you will see that the yellow arrow moved to the breakpoint and that the watch panel updated the value of all our expressions.

[image: step 0 jkjfe34]

The value of all expressions is zero because the debugger stopped before executing the code specified at the breakpoint line (recall that S is initialized to 0 and that i will range from 0 to 1200). If you click again on the green arrow, execution will continue until the next breakpoint (we are in a for loop, so this will be again the same line - trust me for the time being).

[image: step 1 kfjjg9]

Now i has been increased to 1, S is still 0 (remember that the execution stopped before executing the code at the breakpoint) and therefore S + i is now 1. Click one more time on the green arrow and values should update accordingly (i.e. S to 1, i to 2 and S + i to 3), another round of execution should update S to 3, i to 3 and S + i to 6. Got how this works? Variable i is increased by one each time, while S increases by
i. You can go on for a few more iterations and see if this makes any sense to you, once you are done with debugging you can stop the execution by pressing the red square on the small debug panel.

Please take some more time to familiarize with Visual Studio Code (creating files, saving files, interacting with the debugger etc.) as in the next practicals we will take this ability for granted. Once you are done you can move on and do the following exercises.

VS Code - collaborative coding

Visual Studio Code offers a cool way to collaborate in realtime on a project you are working on. Let’s see how to set it up.

1. Install: First make sure you have Live Share Extension Pack [https://marketplace.visualstudio.com/items?itemName=MS-vsliveshare.vsliveshare-pack] installed. It should already be included in VS Code 2019, if not got to extensions and install it:

[image: vsc-folder1]

Let’s share some code - as example, we will use a project taken from Object Oriented Programming chapter.

2. open a folder: Once you downloaded the code, open the folder where you put it with File->Open Folder (avoid Open Workspace for simplicity reasons). You should end up with something like this:

CAREFUL ABOUT WHAT YOU SHARE !!!

Once you start sharing, anything in that folder will be accessible and writable by others, we do not want to see your embarassing desktop/home folder !

[image: vsc-folder2]

3. Sign in Now you need to sign in, for this we refer to the the official How To [https://docs.microsoft.com/en-us/visualstudio/liveshare/use/vscode#sign-in]

NOTE: in order to share your folder, you will need a Github account [https://github.com], so please if you don’t have it already create one now

4. Share the folder: See the official How To [https://docs.microsoft.com/en-us/visualstudio/liveshare/use/vscode#share-a-project]

VS Code - Sharing test runs

In Part B we will also heavily use unit tests (see Unittest tutorial [https://sciprog.davidleoni.it/errors-and-testing/errors-and-testing-sol.html#Testing-with-Unittest]), so it’s a good idea to enabling sharing of test runs by installing Test Explorer Live Share [https://marketplace.visualstudio.com/items?itemName=hbenl.vscode-test-explorer-liveshare] extension:

IT MAY NOT WORK!

It’s often troublesome enough having working tests on your own system, so I expect sharing to be even more problematic. As of Nov 2020, I’ve never tried this thing before, so let’s make a try and if if doesn’t work let’s just use good old screen sharing.

[image: vsc-folder3]

[]:

 OOP

OOP

	OOP
	Download exercises zip

	What to do

	1. Abstract Data Types (ADT) Theory
	1.1. Intro

	1.2. Complex number theory

	1.3. Datatypes the old way

	1.4. Finding the pattern

	1.5. Object Oriented Programming

	2. ComplexNumber class
	2.1. Class declaration

	2.2. Constructor __init__

	2.3. Defining methods

	2.4. ComplexNumber code skeleton

	2.5. Complex numbers magnitude

	2.6. Complex numbers equality

	2.7. Complex numbers isclose

	2.8. Complex numbers addition

	2.9. Adding a scalar

	2.10. Complex numbers multiplication

	3. MultiSet

	3.1 __init__ add and get

	3.2 removen

	4. Challenges

	OOP Matrix Challenge
	Download exercises zip

	What to do

	DenseMatrix

	Constructors and printing
	Constructor as list of lists

	str and repr

	constructor as list of triplets

	shape

	Brackets operator

	nonzero

	isclose

	Equality

	Sum

	Multiplication
	Matrix vector multiplication

	Vector matrix multiplication

	Matrix matrix multiplication

	SparseMatrix

	Sparse constructors and printing

	Sparse shape

	Sparse Brackets operator

	Sparse nonzero

	Sparse isclose

	Sparse equality

	Sparse sum

	Sparse multiplication
	Sparse matrix vector multiplication

	Sparse vector matrix multiplication

 Recursion

Recursion

	simple functional programming
	SimpleFP - how-to

	SimpleFP - variable assignment

	SimpleFP - list creation

	SimpleFP - boxing

	SimpleFP - concatenation

	SimpleFP - accessing list elements

	SimpleFP - slicing

	SimpleFP - minimal instruction set

	SimpleFP - functions and conditionals

	SimpleFP - recursion

	Simple FP - Example - scount

	Simple FP - debugging

	SimpleFP: a recursion scheme

	Example - sdouble

	Exercise - debug double

	Exercise - sfilter_even

	Exercise - smerry

	Exercise - ssum

	Exercise - smin

	Exercise - ssearch

	Exercise - sbin_search

	Exercise - szip

	Exercise - sunnest

	Exercise - sfib

	Exercise - sall

	Exercise - srev

	Exercise - spalindrome

	Exercise - snest

	Exercise - spalace

	Exercise - srep

	Exercise - ssortin
	Continue

	accumulators and indeces
	Example - adouble

	Exercise - debug adouble

	Exercise - afilter_even

	Exercise - amerry

	Exercise - afib

	Exercise - asearch

	Exercise - abin_search

	Exercise - azip

	Exercise - aunnest

	Exercise - arev

	Exercise - apalindrome

	Exercise - anest

	Exercise - apalace

	Exercise - arep

	Exercise - asortin

	Exercise - ahist

	Exercise - agap

	Continue

	divide and conquer
	Managing solutions

	Divide and conquer - SimpleFP style
	Example - dsdouble

	Exercise - debug dsdouble

	Exercise - dssum

	Exercise - dsmin

	Exercise - dszip

	Exercise - dsunnest

	Exercise - dsall

	Exercise - dsrev

	Exercise - dsrep

	Divide and conquer - Accumulator style
	Example - dacount

	Example - dadouble

	Exercise - debug dadouble

	Exercise - dahist

	TODO will add more

	More exercises

	Continue

	challenges
	Challenge - Cthulhu

	Challenge - Ghatanothoa

	Challenge - Hastur

	Challenge - Tsathoggua

	Challenge - Yig

	Challenge - Shub-Niggurath

	Challenge - Shoggoth

	Challenge - Azathoth

	References

 Sorting

Sorting

	intro
	Download exercises zip

	Introduction
	References

	What to do

	Exercises

	1 Selection Sort
	1.1 Implement swap

	1.2 Implement argmin

	1.3: Full selection_sort

	2 Insertion sort

	3 Merge sort
	Taking last element

	Costly internal del

	Costly internal pop

	3.1 merge 1

	3.2 merge2

	4 quick sort
	4.1 pivot

	4.2 quicksort and qs

	5 SwapArray
	5.1 is_sorted

	5.2 max_to_right

	5.3 swapsort

	Challenges

	challenges
	Download exercises zip

	Crime parade

	McFat’s

	Partitocracy

 Linked lists

Linked lists

	intro
	Download exercises zip

	0 Introduction
	References

	What to do

	0.1 Initialization

	0.2 Growing

	0.3 Visiting

	1 v1: a slow LinkedList
	1.a) Testing

	1.b) Differences with the book

	1.c) Please remember…

	2 v2 faster size
	2.1 Save a copy of your work

	2.2. Improve size

	3 v3 Faster append
	3.1 Save a copy of your work

	3.2 add _last field

	3.3 add method skeleton

	3.4 test driven development

	3.4.1 LastTest

	3.4.2 improve myAssert

	3.5 update methods that mutate the LinkedList

	3.6 Run tests

	4 v4 Go bidirectional
	4.1 Save your work

	4.2 Node backlinks

	4.3 Better str

	4.4 Modify add

	4.5 Add to_python_reversed

	4.6 Add invariant

	4.7 Modify other methods

	4.8 Run the tests

	5 EqList
	5.1 eq

	5.2 remsub

	6 Cloning
	6.1 rev

	6.2 clone

	6.3 Slice

	7 More exercises
	7.1 occurrences

	7.2 shrink

	7.3 dup_first

	7.4 dup_all

	7.5 mirror

	7.6 norep

	7.7 find_couple

	7.8 swap

	7.9 gaps

	7.10 flatv

	7.11 bubble_sort

	7.12 merge

	7.13 couple_sort

	7.14 linked algebra

	7.15 sepel

	7.16 linked pivot

	8 Last exercises
	8.1 rotate

	8.2 rotaten

	8.3 plus_one

	Challenge

	challenges
	Download exercises zip

	rshift

	lshift

 Queues

Queues

	intro
	Download exercises zip

	Introduction
	What to do

	1. LinkedQueue
	1.1 enqn

	1.2 deqn

	2. CircularQueue

	3. ItalianQueue
	3.1 Slow v1

	3.1.1 init

	3.1.2 Slow enqueue

	3.1.2 dequeue

	3.2 Fast v2

	3.2.1 Save a copy

	3.2.2 make it fast

	4. Supermarket queues
	CashQueue

	Supermarket

	Supermarket as a queue

	Implementation

	4.1 Supermarket size

	4.2 Supermarket dequeue

	4.3 Supermarket enqueue

	5. Shopping mall queues
	Client

	Shop

	Mall

	Mall as a queue

	Implementation

	6.1 Mall enqueue

	6.2 Mall dequeue

	6. Company queues
	7.1 add_employee

	7.2 add_task

	7.3 work

	7. Concert
	7.1 dequeue

	8. OfficeQueue
	8.1 - time_to_service

	8.2 split

	circular queue
	Download exercises zip

	1. Introduction

	2. Example

	3. Circular span

	4. Implement CircularQueue

 Part B References

Part B References

	Part B theory slides [https://sciproalgo2020.readthedocs.io/en/latest/] by Luca Bianco

	Problem Solving with Algorithms and Data Structures using Python [https://runestone.academy/runestone/static/pythonds/index.html] online book by Brad Miller and David Ranum

	Theory exercises (complexity, tree visits, graph visits) - by Alberto Montresor [https://drive.google.com/drive/folders/1RwjiSvIq60Z9mj_gCd5K2E6Bj9y1R0CL]

LeetCode for Part B

In general: https://leetcode.com/problemset/all/ (sort by easy difficulty)

LeetCode LinkedLists

	Merge Two Sorted Lists [https://leetcode.com/problems/merge-two-sorted-lists/]

	Remove Duplicates from Sorted List [https://leetcode.com/problems/remove-duplicates-from-sorted-list/]

	Intersection of Two Linked Lists [https://leetcode.com/problems/intersection-of-two-linked-lists/]

	Linked List Cycle [https://leetcode.com/problems/linked-list-cycle/] NOTE: a solution which occupies \(O(n)\) memory is easy - the follow up question requires \(O(1)\) memory, for that you will probably need to look at the solution

	Palindrome Linked List [https://leetcode.com/problems/palindrome-linked-list/]

	Merge In Between Linked Lists [https://leetcode.com/problems/merge-in-between-linked-lists/]

	Odd Even Linked List [https://leetcode.com/problems/odd-even-linked-list/]

	Split Linked List in Parts [https://leetcode.com/problems/split-linked-list-in-parts/]

	Partition List [https://leetcode.com/problems/partition-list/]

	Reverse Linked List II [https://leetcode.com/problems/reverse-linked-list-ii/]

	Remove Duplicates from Sorted List II [https://leetcode.com/problems/remove-duplicates-from-sorted-list-ii/]

	Copy List with Random Pointer [https://leetcode.com/problems/copy-list-with-random-pointer/]

LeetCode Queues

	Number of Recent Calls [https://leetcode.com/problems/number-of-recent-calls/] notice you only need to return number of calls occurred during last 3000 ms, so please try avoiding storing all previous calls history

	Design Front Middle Back Queue [https://leetcode.com/problems/design-front-middle-back-queue/]

LeetCode Trees

NOTE 1: on LeetCode root usually can also be None

NOTE 2: on LeetCode self is reserved for the test runner, ignore it

NOTE 3: if you try the algorithms on your computer, you will want to add these __str__ and __repr__ methods to TreeNode:

class TreeNode:
 def __init__(self, val=0, left=None, right=None):
 self.val = val
 self.left = left
 self.right = right

 def __str__(self):

 """ Returns a pretty string of the tree """
 def str_branches(node, branches):
 """ Returns a string with the tree pretty printed.

 branches: a list of characters representing the parent branches. Characters can be either ` ` or '│'
 """
 strings = [str(node.val)]

 i = 0
 if node.left != None or node.right != None:
 for current in [node.left, node.right]:
 if i == 0:
 joint = '├'
 else:
 joint = '└'

 strings.append('\n')
 for b in branches:
 strings.append(b)
 strings.append(joint)
 if i == 0:
 branches.append('│')
 else:
 branches.append(' ')

 if current != None:
 strings.append(str_branches(current, branches))
 branches.pop()
 i += 1
 return "".join(strings)

 return str_branches(self, [])

 def __repr__(self):
 return self.__str__()

NOTE 4: testcases are expressed as a list, which doesn’t tell much how the tree is structured. To see a visualization of the tree, when you get an error you can copy paste the ‘Input’ testcase into this tab and turn on the Tree Visualizer selector:

[image: image0]

Trees exercises [https://leetcode.com/tag/tree/] on LeetCode (sort by easy difficulty), for example:

	Merge Two Binary Trees [https://leetcode.com/problems/merge-two-binary-trees]

	Sum range of BST [https://leetcode.com/problems/range-sum-of-bst/]

	Invert Binary Tree [https://leetcode.com/problems/invert-binary-tree/]

	Minimum Depth of Binary Tree [https://leetcode.com/problems/minimum-depth-of-binary-tree/]

	Symmetric Tree [https://leetcode.com/problems/symmetric-tree/]

	Minimum Depth of Binary Tree [https://leetcode.com/problems/minimum-depth-of-binary-tree/] HINT: when you need to calculate a min of two numbers but one of them may be undefined, you can initialize them to math.inf

	Increasing Order Search Tree [https://leetcode.com/problems/increasing-order-search-tree/]

	Binary Tree Level Order Traversal [https://leetcode.com/problems/binary-tree-level-order-traversal] HINT: use a queue, for more info see here [https://sciprog.davidleoni.it/trees/bin-trees.html#4.-Queue-visit]

	Average of Levels in Binary Tree [https://leetcode.com/problems/average-of-levels-in-binary-tree/] HINT: use a queue, for more info see here [https://sciprog.davidleoni.it/trees/bin-trees.html#4.-Queue-visit]

	Cousins in Binary Tree [https://leetcode.com/problems/cousins-in-binary-tree/] NOTE: nodes have all distinct values, a queue visit might help

	Find Mode in Binary Search Tree [https://leetcode.com/problems/find-mode-in-binary-search-tree/] - you don’t need to bother about the follow up question

	Path Sum [https://leetcode.com/problems/path-sum/] DO NOT store in memory all possible paths to then calculate the sum of each, that would be a waste of space.

	Second Minimum Node In a Binary Tree [https://leetcode.com/problems/second-minimum-node-in-a-binary-tree]

	Lowest Common Ancestor of a Binary Search Tree [https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-search-tree/]

	Balanced Binary Tree [https://leetcode.com/problems/balanced-binary-tree/]

	Binary Tree Tilt [https://leetcode.com/problems/binary-tree-tilt]

LeetCode Graphs

	Keys and rooms [https://leetcode.com/problems/keys-and-rooms]

Geeks for geeks

NOTE: required outputs are a bit strange, often times they ask you to print stuff while in fact you just need to return some data.

Geeks for geeks Queues

	Interleave the first half of the queue with second half [https://www.geeksforgeeks.org/interleave-first-half-queue-second-half/] to implement it, use Queue object from python module queue [https://docs.python.org/3/library/queue.html]

	Sorting a Queue without extra space [https://www.geeksforgeeks.org/sorting-queue-without-extra-space/] remember to use only the allowed operations !

Geeks for geeks Graphs

NOTE: if they require you to produce stuff like matrices they are shown as a line of numbers but you have to return the actual Python matrix

DO NOT print anything

	Distance of nearest cell having 1 in a binary matrix [https://practice.geeksforgeeks.org/problems/distance-of-nearest-cell-having-1-1587115620/1] - HINT: basically it’s a BFS on a matrix

	Rotten Oranges [https://practice.geeksforgeeks.org/problems/rotten-oranges2536/1#] - HINT: basically it’s a BFS on a matrix

 Commandments

Commandments

MOVED TO https://en.softpython.org/commandments.html

You will be redirected in 10 seconds

[]:

 Changelog

Changelog

Scientific Programming Data Science Lab

https://sciprog.davidleoni.it

August 2022

	upgraded to Jupman 3.5.1

1.0 September 2020

	upgraded to Jupman 3, changed folder structure

	moved webste to sciprog.davidleoni.it

	building with Github Actions

0.1, September 2018

Site is born

 Index

Index

 Old news

Old news

Warning: last news are published at the top of course description

Wed 08, Jun 2022: Published exam solutions

Wed 09, Feb 2022: Published exam solutions

Wed 12, Jan 2022: Published exam solutions

Thu 16, Dec 2021: Published exam solutions

Fri 12, Nov 2021: Published exam solutions

	I fixed the expected output and tests for cartels

5 November 2021: Published midterm simulation solutions:

	I fixed the tests

	to display filled nodes you also need to add the property style='filled'

24 Friday September lab is cancelled. Regular meetings will start again from Thursday 30 September

6 September 2021: Published exam solutions

12 July 2021: Published exam solutions

11 June 2021: Published exam solutions

12 September 2020:

	Moved DS Lab website to sciprog.davidleoni.it [https://sciprog.davidleoni.it]

	Simplified exercises structure

10 February 2021: Published exam solutions

14 January 2021: Published exam solutions

29 December 2020: created Circular Queue separate worksheet, with (hopefully) better explanation

16 December 2020: Published Midterm B solutions

24 November 2020: vastly updated Complexity workesheet and renamed to Algorithm analysis and recursive functions

6 November 2020: published midterm A solutions

3 November 2020: published midterm simulation solutions

22 October 2020: A TUTORING SERVICE for data science studentes has been set up, see announcement on Moodle [https://didatticaonline.unitn.it/dol/mod/forum/discuss.php?d=182045]

25 August 2020 - Published 2020-08-24 exam results

	detailed grades [http://davidleoni.it/etc/spex/exams/2020-08-24-public-grades.html]

	corrections [https://drive.google.com/drive/folders/1W8ij-9Th-Zt5qgEBXl-vrhIutDNihiAp?usp=sharing]

	solutions

27 July 2020 - Published 2020-07-17 exam results

	detailed grades [http://davidleoni.it/etc/spex/exams/2020-07-17-public-grades.html]

	corrections [https://drive.google.com/drive/folders/17K2s9rd_P3scJPkvODxwySyN5_Zv3gxU?usp=sharing]

	solutions

17 June 2020 - Published 2020-06-16 exam results

	detailed grades [http://davidleoni.it/etc/spex/exams/2020-06-16-public-grades.html]

	corrections [https://drive.google.com/open?id=13nLV7VqPYtyYpkPOkfOe2VLxxcSP0u1B]

	solutions

4 March 2020 - Published 2020-02-10 exam results

	detailed grades [http://davidleoni.it/etc/spex/exams/2020-02-10-public-grades.html]

	corrections [https://drive.google.com/open?id=1CBVHvf2gBrB7tCym2iDgTDIRPO8dSV-r]

	solutions

31 January 2020 - Published 2020-01-23 exam results

	detailed grades [http://davidleoni.it/etc/spex/exams/2020-01-23-public-grades.html]

	corrections [https://drive.google.com/open?id=1HdSp9Hs2autPGCV718HZfSZr9oiZ-NCU]

	solutions

7 January 2020 Extra tutoring:

(Beware rooms are not always the same)

	Tue 14 January 10.00 - 12.00 A216

	Wed 15 January 10.00 - 12.00 A216

	Thu 16 January 10.00 - 12.00 A214

	Fri 17 January 10.00 - 12.00 A221

	Tue 21 January 10.00 - 12.00 A216

23 December 2019 - Published Midterm B grades:

	detailed grades [http://davidleoni.it/etc/spex/exams/2019-12-20-public-grades.html]

	corrections [https://drive.google.com/drive/folders/1tUo9e-V3mzLVNipNXfBwFqh_Wv-WIcSp?usp=sharing]

	solutions

07 December 2019 - Set midterm Part B date:

	Friday 20th December, lab A202, from 11.45 to 13.45

	Admission: students who got grade >= 16 at the first midterm

06 December 2019: Published midterm results:

	detailed grades [http://davidleoni.it/etc/spex/exams/2019-11-07-public-grades.html]

	corrections [https://drive.google.com/open?id=1RBLG6h843RPFXn6JAeyZaMDHhKhX2eRs]

28 November 2019: Set exams dates:

	23 January 8:30-13:30 A201

	10 February 8:30-13:30 A202

7 November 2019: published Midterm Part A solution

5 November 2019: WARNING: TUTORING CHANGE

Since Fridays apparently aren’t the best day for tutoring (nobody went twice in a row), we’re moving Friday tutoring to Wednesday 9:00-11:00 starting with Wednesday 6 November. Rooms: A219 until Wednesday 13 November included, A218 afterwards

Given the fact many of you took ages to do the midterm simulation, I’d recommend attendance.

2 November 2019:

	published Midterm simulation solutions

	added NaN and infinities section to matrix: numpy exercises

	improved pandas exercises

	added functions exercises

24 October 2019: updated numpy matrices and visualization

22 October 2019: WARNING: TUTORING TIMETABLE CHANGE!

Unfortunately, due to reasons beyond our control we need need to change timetable for tutoring:

	Mondays remain the same: room A215 from 11.30-13.30

	Fridays change: instead of previous 12.30-14:30, the new hours will be 11.00-13.00. Friday room is also changed, it will be A218 for all fridays

	Graph formats draw functions:

	fixed bug about username not found in windows

	now it is possible to save to file in draw_mat, draw_nx, etc by passing filename in parameter save_to, see documentation [https://sciprog.davidleoni.it/graph-formats/graph-formats-sol.html#Saving-a-graph-to-a-file]

17 October 2019 : rewrote Graph formats page

12 October 2019 : tutoring service has been set up on Mondays and Fridays starting Monday 14th October, see timetable

10 October 2019: Save the dates:

	MIDTERM PART A SIMULATION: 31 october 15:30-17:30 room a202

	MIDTERM PART A: 7 november 11:30-13:30 room b106

IMPORTANT: differently from past Part A exams, there will also be an exercise on Pandas.

	merged Part A graph stuff into graph formats [https://sciprog.davidleoni.it/graph-formats/graph-formats-sol.html]

7 October 2019

	added Tuples page (were extracted from Lists)

	updated Dictionaries

	rewrote Sets, now belongs to Part A

3 October 2019: updated Lists

1 October 2019

	updated Strings

	updated error handling and testing

24 September 2019

	updated introduction

	added Python basics

27 August 2019: published exam solutions

2 July 2019: published exam solutions

10 June 2019: published exam solutions

	13 January 2019: published exam solutions

	23 January 2019: published exam solutions

	23 January 2019: removed children() method from GenericTree (you shouldn’t use it anyway)

	10 January 2019: published Part B midterm solutions

	9 January 2019: added topsort to graph algorithm exercises

	24 December 2018:

	Added to LinkedList exercises: EqList, Cloning, and More exercises

	Added to Sorting exercises: chains, SwapArray exercises

	14 December 2018, published:

	stack exercises

	queues exercises

	set exercises

	12 December 2018: the lab of Friday 14th Dec is moved to A211 from 8:30 to 11:30 . As you have noticed, there is even an extra FREE hour of coding, so don’t miss this special Friday offer !

	11 December 2018: published graph algorithm exercises

	9 December 2018: fixed tree exercises

	6 December 2018: published linked-lists exercises

	5 December 2018: expanded sorting with insertion_sort, merge_sort, quick_sort

	16 November 2018: Published midterm solutions

	14 November 2018: Published midterm simulation exam solutions

	6 November 2018: RESTRUCTURED WEBSITE

	Added Exam modalities , please read them

	Added difficulty ratings to exercises

	Added sections:

	Strings

	Graph formats

	Binary relations

	Pandas

	Expanded sections:

	Lists

	Visualization

	26 October 2018: IMPORTANT: there will be NO LABS on Tuesday 20 October and on Friday 2 November. Next lab is scheduled for Tuesday 6 November.

	23 October 2018: Restructured Basic data structures material, separating into pages Lists and Dictionaries

	16 October 2018:

	restructured Matrix material, separating matrix chapter into pages Matrix as lists of lists and Graph formats

	fixed graph drawing function and moved it to sciprog module.

	13 October 2018: added explanations to Matrix as lists of lists lesson

	The missed lab of 2nd October is moved to Wednesday 10 October 11.30-13.30 room A209 Povo 1. Other scheduled labs will be held regularly.

	5 October 2018 14:30 A214 Povo 1: lab to be held regularly

	2 October 2018: Lab 2 did not happen, I apologize for the inconvenience. See you on Friday 5th October at 14:30

	21 Sept 2018: Moved website from old QCB master sciprolab2.readthedocs.io [https://sciprolab2.readthedocs.io] to sciprog.davidleoni.it [https://sciprog.davidleoni.it]

[]:

 Slides 2020/21

Slides 2020/21

For latest ones, see here

Part A

Lab A.1

Wednesday 23 Sep 2020

Links

lab site: sciprog.davidleoni.it [https://sciprog.davidleoni.it]

	Installation from sciprog, with links to relevant SoftPython stuff

	Tools and Scripts on SoftPython [https://en.softpython.org/tools/tools-sol.html] : describes Jupyter and other things are described more in detail

	Python basics [https://en.softpython.org/basics/basics-sol.html] : hopefully we will see something (try doing them at home anyway)

What I expect

	if you don’t program in Python, you don’t learn Python

	you don’t learn Python if you don’t program in Python

	to be a successful data scientist, you must know programming

	Exercise: now put the right priorities in your TODO list ;-)

Course contents

	Hands-on approach

Part A - python intro

	logic basics

	discrete structures basics

	python basics

	data cleaning

	format conversion (matrices, tables, graphs, …)

	visualization (matplotlib, graphviz)

	some analytics (with pandas)

	focus on correct code, don’t care about performance

	plus: some software engineering wisdom

Part A exams:

There will always be some practical structured exercise.

Examples:

	analizing employees of University of Trento [https://sciprog.davidleoni.it/exams/2019-08-26/solutions/exam-2019-08-26-sol.html#Part-A---University-of-Trento-staff]

	visualizing intercity bus network [https://sciprog.davidleoni.it/exams/2019-02-13/solutions/exam-2019-02-13-sol.html#Part-A---Bus-network-visualization]

	extracting categories from workshops of Trentino [https://sciprog.davidleoni.it/exams/2019-07-02/solutions/exam-2019-07-02-sol.html#A1-Botteghe-storiche]

Sometimes, there can also be a more abstract thing with matrices / relations, (i.e. surjective relation [https://sciprog.davidleoni.it/exams/2018-11-16/solutions/exam-2018-11-16-sol.html#A2-surjective])

DO read the exam rules [https://sciprog.davidleoni.it/#Exams]

Part B - algorithms

	going from theory taught by Prof. Luca Bianco to Python 3 implementation

	performance matters

	few Python functions

Lab A.2

Monday 28 Sep 2020

Worksheets

	Finish Basics (NOTE: redownload it, was updated)

	Strings1 - Introduction [https://en.softpython.org/strings/strings1-sol.html]

	Strings2 - Operators [https://en.softpython.org/strings/strings2-sol.html]

	Strings3 - Methods [https://en.softpython.org/strings/strings3-sol.html]

	(a fourth page remains to be added)

References:

	Andrea Passerini - Introduction to Python slides [http://disi.unitn.it/~passerini/teaching/2020-2021/sci-pro/slides/A01-introduction.pdf]

	Andrea Passerini - data structures slides [http://disi.unitn.it/~passerini/teaching/2020-2021/sci-pro/slides/A02-datastructures.pdf]

Lab A.3

Wednesday 30 Set 2020

Worksheets:

	Lists1 - Introduction [https://en.softpython.org/lists/lists1-sol.html]

	Lists2 - Operators [https://en.softpython.org/lists/lists2-sol.html]

	Lists3 - Methods [https://en.softpython.org/lists/lists3-sol.html]

	(a fourth page remains to be added)

References: Andrea Passerini - data structures slides [http://disi.unitn.it/~passerini/teaching/2020-2021/sci-pro/slides/A02-datastructures.pdf]

For Realtime stuff during the lab, see this repl:

https://repl.it/@DavidLeoniWork/sciprog-ds-lab-2020-21

Lab A.4

Monday 5 Oct 2020

Worksheets (now English links are finally online!)

	Tuples [https://en.softpython.org/tuples/tuples-sol.html]

	Sets [https://en.softpython.org/sets/sets-sol.html]

	Dictionaries1 - Introduction [https://en.softpython.org/dictionaries/dictionaries1-sol.html]

	Dictionaries2 - Operators [https://en.softpython.org/dictionaries/dictionaries2-sol.html]

	Dictionaries3 - Methods [https://en.softpython.org/dictionaries/dictionaries3-sol.html]

	(a fourth and fifth pages remain to be added)

References:

	Andrea Passerini - data structures slides [http://disi.unitn.it/~passerini/teaching/2020-2021/sci-pro/slides/A02-datastructures.pdf]

	Real Python sets [https://realpython.com/python-sets/]

For realtime stuff during the lab, see this repl:

https://repl.it/@DavidLeoniWork/sciprog-ds-lab-2020-21

I copy here last weekend announcment:

I added here some links to exercises: https://en.softpython.org/references.html

	Beginners: try W3Resources

	Intermediate: exercises from LeetCode and first tutorial from Software Carpentry

	Math-oriented people: try Introduction to Scientific Programming with Python by Joakim Sundnes

Lab A.5

Wednesday 7 Oct 2020

	Worksheets (now English links are finally online!)

	Control Flow 1 - ifs [https://en.softpython.org/control-flow/flow1-if-sol.html]

	Control Flow 2 - for [https://en.softpython.org/control-flow/flow2-for-sol.html]

	Control Flow 3 - while [https://en.softpython.org/control-flow/flow3-while-sol.html]

	Errors and testing [https://en.softpython.org/errors-and-testing/errors-and-testing-sol.html] Note: SoftPython tutorial only talks about quick testing with assert which is fine for Part A of this course. In Part B we will use more sophisticated testing with unittest

	References: Andrea Passerini - complex statements [http://disi.unitn.it/~passerini/teaching/2020-2021/sci-pro/slides/A03-controlflow.pdf]

For realtime stuff during the lab, see this repl:

https://repl.it/@DavidLeoniWork/sciprog-ds-lab-2020-21

Lab A.6

Monday 12 Oct 2020

Worksheets

	More on functions

	Matrices - list of lists [https://en.softpython.org/matrices-lists/matrices-lists-sol.html]

	Errors and testing [https://en.softpython.org/errors-and-testing/errors-and-testing-sol.html] Note: SoftPython tutorial only talks about quick testing with assert which is fine for Part A of this course. In Part B we will use more sophisticated testing with unittest

References:

	Andrea Passerini - complex statements [http://disi.unitn.it/~passerini/teaching/2020-2021/sci-pro/slides/A03-controlflow.pdf]

	Andrea Passerini - functions [http://disi.unitn.it/~passerini/teaching/2020-2021/sci-pro/slides/A04-functions.pdf]

For realtime stuff during the lab, see this repl:

https://repl.it/@DavidLeoniWork/sciprog-ds-lab-2020-21

Lab A.7

Wednesday 14 Oct 2020

Worksheets

	Sequences [https://en.softpython.org/sequences/sequences-sol.html] (already translated)

	Data formats [https://en.softpython.org/formats/formats-sol.html] (already translated)

References:

	Andrea Passerini - Modules and programs [http://disi.unitn.it/~passerini/teaching/2020-2021/sci-pro/slides/A05-programs.pdf]

For realtime stuff during the lab, see this repl:

https://repl.it/@DavidLeoniWork/sciprog-ds-lab-2020-21

Lab A.8

Monday 19 Oct 2020

Worksheets:

	Graph formats [https://en.softpython.org/graph-formats/graph-formats-sol.html]

	graph matrices, adjacency lists (we will use networkx next lab)

	Binary relations [https://en.softpython.org/binary-relations/binary-relations-sol.html] (finish at home)

NOTE: In Part A we will limit ourselves to graph formats and see some theory in separate binary relations notebook, while in Part B of the course will focus on graph algorithms [https://sciprog.davidleoni.it/graph-algos/graph-algos.html]

For realtime stuff during the lab:

	sciprog repl [https://repl.it/@DavidLeoniWork/sciprog-ds-lab-2020-21]

	graphviz repl [https://repl.it/@DavidLeoniWork/softgraphviz]

	graph drawings and challenges [https://docs.google.com/presentation/d/1rnSWMikHWAgxyVpFWI1NouB7iQiZNYUKwgF9IHL0MdU/edit?usp=sharing]

How to see graphviz on repl.it

Since we’re online, I came up with this solution

NOTE: this is a shaky experiment only to share code during the lab, but you won’t need if you do the worksheets above alone.

	Go to this NEW repl: https://repl.it/@DavidLeoniWork/softgraphviz

	Fork the project (DO NOT copy paste files in your projects, you really need to fork !)

[image: replit-fork]

	Run the script - you will have to wait some time until it loads all the packages:

NOTE: this will activate a server, which means from now on the server will be kept running and you shouldn’t need to click on Run again (unless of course something is seriously compromised)

[image: replit-run]

	Try making changes to example.py and then, instead of hitting the usual Run in repl, click the Reload button. Reload will run the script example.py, which at the end regenerates the output.dot file used in the visualization

NOTE: that after a while of inactivity, the server might stop and repl will need to reload all the packages.

[image: replit-reload]

Lab A.9

Wednesday 21 Oct 2020

EXAM - Save the date:

	Simulation: Monday 2 November, 14:30-16:30 (online)

	Midterm Part A: Friday 6 November, 11.30-13.30 (online) - please login 15 mins before and allocate some time after the end in case we have technical problems

Simulation attendance is recommended!: during the simulation and the exam you will connect online to a linux environment (but you do not need to install linux!), so the simulation is your chance to try the system.

You will receive official communication with details in a short time. For now please read exam guidelines from previous years [https://sciprog.davidleoni.it/#Exams]

WORKSHEETS:

Today we focus on graphs as adjacency lists, networkx

	Graph formats [https://en.softpython.org/graph-formats/graph-formats-sol.html]

	Binary relations [https://en.softpython.org/binary-relations/binary-relations-sol.html]

NOTE: In Part A we will limit ourselves to graph formats and see some theory in separate binary relations notebook, while in Part B of the course will focus on graph algorithms [https://sciprog.davidleoni.it/graph-algos/graph-algos.html]

For realtime stuff during the lab:

	sciprog repl [https://repl.it/@DavidLeoniWork/sciprog-ds-lab-2020-21]

	graphviz repl [https://repl.it/@DavidLeoniWork/softgraphviz] (to use, see instructions of previous lab)

	graph drawings and challenges [https://docs.google.com/presentation/d/1rnSWMikHWAgxyVpFWI1NouB7iQiZNYUKwgF9IHL0MdU/edit?usp=sharing]

Lab A.10

Monday 26 Oct 2020

Worksheets:

Today we focus on numpy and matplotlib

	Matrices - Numpy [https://en.softpython.org/matrices-numpy/matrices-numpy-sol.html] - actually we don’t do that much of numpy, it’s more an introduction to things needed for visualization

	Visualization with matplotlib [https://en.softpython.org/visualization/visualization-sol.html]

	The AlgoRythm Opera Challenge [https://en.softpython.org/visualization/algorythm-opera-chal.html]

NOTE 1: Visualization worksheet is different from Italian version! Contains also some statistics on networks.

NOTE 2: after the lab I put on softpython a revised version of the The AlgoRythm Opera Challenge. In particular even if you were at the lab, make sure to try this new last part of the challenge [https://en.softpython.org/visualization/algorythm-opera-chal.html#Final-result-2], with changed variables: most probably you will discover there is some constant in your code which should be a variable instead.

References:

	Andrea Passerini Numpy and Matplotlib slides [http://disi.unitn.it/~passerini/teaching/2020-2021/sci-pro/slides/A08-numpy.pdf]

For realtime stuff during the lab:

	sciprog repl [https://repl.it/@DavidLeoniWork/sciprog-ds-lab-2020-21]

	graph drawings and challenges [https://docs.google.com/presentation/d/1rnSWMikHWAgxyVpFWI1NouB7iQiZNYUKwgF9IHL0MdU/edit?usp=sharing]

Lab A.11

Wednesday 28 Oct 2020

Worksheets:

	Matrices - Numpy images (new!) [https://en.softpython.org/matrices-numpy/numpy-images-sol.html] - was proposed as a challenge during the lab, now on the website you can find a revised version with solutions. Notice images may look like an application, but actually they are matrices, only much nicer to see!

References:

	Andrea Passerini Numpy and Matplotlib slides [http://disi.unitn.it/~passerini/teaching/2020-2021/sci-pro/slides/A08-numpy.pdf]

For realtime stuff during the lab:

	sciprog repl [https://repl.it/@DavidLeoniWork/sciprog-ds-lab-2020-21]

	graph drawings and challenges [https://docs.google.com/presentation/d/1rnSWMikHWAgxyVpFWI1NouB7iQiZNYUKwgF9IHL0MdU/edit?usp=sharing]

Lab A.12

Wednesday 4 Nov 2020

Worksheets:

	Pandas tutorial [https://en.softpython.org/pandas/pandas-sol.html]

	Pandas case study: EURES job offers [https://en.softpython.org/pandas/eures-jobs-sol.html]

	Pandas: Italian Poets challenge [https://en.softpython.org/pandas/italian-poets-chal.html]

	Exercises from Edabit, I put a selection on SoftPython References page [https://en.softpython.org/references.html#Edabit] (if you don’t see it refresh the page with ctrl-R or ctrl-F5)

Note there won’t be pandas during midterm for part A, at most I will use it only to show some data. For you, it could be useful to quickly gain an understanding of dataset contents.

References:

	Andrea Passerini Pandas slides [http://disi.unitn.it/~passerini/teaching/2020-2021/sci-pro/slides/A07-pandas.pdf]

For realtime stuff during the lab:

	sciprog repl [https://repl.it/@DavidLeoniWork/sciprog-ds-lab-2020-21]

	graph drawings and challenges [https://docs.google.com/presentation/d/1rnSWMikHWAgxyVpFWI1NouB7iQiZNYUKwgF9IHL0MdU/edit?usp=sharing]

Part B

[image: hard-python]

Lab B.1

Monday 9 Nov 2020

	Remember that from now on we only use Visual Studio Code, possibly with the Live Share extension, so get familiar with it by reading installation

	Testing with unittest

	OOP (probably only first part)

Lab B.2

Wednesday 11 Nov 2020

Worksheets:

	OOP Finished ComplexNumber, try doing Multiset on your own.

	OOP Matrix Challenge: (updated after the lab, please use this version). Try solving this for next week. Tests are not provided, you are invited to collaboratively write at least some in the new ‘REPL Test Playground’. You can access the link on Moodle [https://didatticaonline.unitn.it/dol/mod/url/view.php?id=721545]

Lab B.3

Monday 16 Nov 2020

Worksheets:

	Complexity: the invisible enemy

	Sorting Challenge

	Sorting Selection sort and Insertion sort

Lab B.4

Wednesday 18 Nov 2020

Worksheets:

	Complexity: the invisible enemy

	Sorting Challenge - I added Partitocracy challenge (a kind of quicksort)

	Sorting in lab we will see quicksort and mergesort, finish the rest at home

Lab B.5

Monday 23 November

	LinkedList v1

	Little LinkedList challenge

At home: try to finish whole LinkedList worksheet

Lab B.6

Wednesday 25 November

	LinkedList v2 , other linked lists exercises

	Stacks

At home: try to finish whole LinkedList and stacks worksheets

Lab B.7

Monday 30 November

	Queues (CircularQueue and ItalianQueue)

	I added some exercises about linked lists and queues on Part B References page on Sciprog

At home: try to finish whole Queues worksheet

Lab B.8

Wednesday 2 December

	Binary trees

At home: try to finish whole Binary trees worksheet

Lab B.9

Wednesday 9 December

Generic trees, at home: try to finish whole Generic trees worksheet

Also:

	during ‘extra’ lab on Monday we’ve seen tree visit using queues, I wrote something about in bintree page

	Also: I updated references sections with exercises from LeetCode about binary trees, adding also some note you might find helpful

	As a further exercise, you might try doing them also on generic trees.

Lab B.10

Monday 14 December

	Graphs algos worksheet

	Will put more material …

NOTE: although past years I didn’t give much exercises on graphs, this year you may get one on BFS, DFS, topsort, connected components …

[]:

 here go packages only needed during documentation build

here go packages only needed during documentation build

Sphinx==4.5.0
nbsphinx==0.8.8
arghandler==1.2.0
recommonmark==0.7.1
sphinx_rtd_theme==1.0.0
pylatexenc==2.1
pathspec==0.7.0
readthedocs-sphinx-ext==2.1.7

other deps snapshotted with pip freeze ———————————————————

alabaster==0.7.12
argcomplete==2.0.0
attrs==21.4.0
Babel==2.10.1
backcall==0.2.0
beautifulsoup4==4.11.1
bleach==5.0.0
certifi==2022.5.18.1
charset-normalizer==2.0.12
commonmark==0.9.1
decorator==5.1.1
defusedxml==0.7.1
docutils==0.17.1
entrypoints==0.4
fastjsonschema==2.15.3
idna==3.3
imagesize==1.3.0
importlib-metadata==4.11.4
importlib-resources==5.7.1
ipython==7.34.0
jedi==0.18.1
Jinja2==3.1.2
jsonschema==4.5.1
jupyter-client==7.3.1
jupyter-core==4.10.0
jupyterlab-pygments==0.2.2
MarkupSafe==2.1.1
matplotlib-inline==0.1.3
mistune==0.8.4
nbclient==0.6.3
nbconvert==6.5.0
nbformat==5.4.0
nbsphinx==0.8.8
nest-asyncio==1.5.5
packaging==21.3
pandocfilters==1.5.0
parso==0.8.3
pexpect==4.8.0
pickleshare==0.7.5
prompt-toolkit==3.0.29
ptyprocess==0.7.0
Pygments==2.12.0
pyparsing==3.0.9
pyrsistent==0.18.1
python-dateutil==2.8.2
pytz==2022.1
pyzmq==23.0.0
requests==2.27.1
six==1.16.0
snowballstemmer==2.2.0
soupsieve==2.3.2.post1
sphinxcontrib-applehelp==1.0.2
sphinxcontrib-devhelp==1.0.2
sphinxcontrib-htmlhelp==2.0.0
sphinxcontrib-jsmath==1.0.1
sphinxcontrib-qthelp==1.0.3
sphinxcontrib-serializinghtml==1.1.5
tinycss2==1.1.1
tornado==6.1
traitlets==5.2.1.post0
typing_extensions==4.2.0
urllib3==1.26.9
wcwidth==0.2.5
webencodings==0.5.1
zipp==3.8.0

 <no title>

networkx==2.0
pydot==1.2.4
pydotplus==2.0.2

_images/exams_2020-11-02_solutions_exam-2020-11-02-sol_37_0.png
GALACTIC LOVE

AFFINITY

_images/exams_2020-11-02_solutions_exam-2020-11-02-sol_38_0.png
GALACTIC LOVE

AFFINITY

_images/exams_2020-11-02_solutions_exam-2020-11-02-sol_34_0.png
GALACTIC LOVE

22 Aquarius

AFFINITY

_images/exams_2020-11-02_solutions_exam-2020-11-02-sol_36_0.png
GALACTIC LOVE

22 Aquarius

AFFINITY

_images/exams_2020-11-02_solutions_exam-2020-11-02-sol_39_0.png
GALACTIC LOVE

Vjo Capricornus

AFFINITY

_images/exams_2020-11-02_solutions_exam-2020-11-02-sol_40_0.png
GALACTIC LOVE

AFFINITY

_images/exams_2020-11-02_solutions_exam-2020-11-02-sol_22_0.png

_images/exams_2020-11-02_solutions_exam-2020-11-02-sol_31_0.png

_images/exams_2020-11-02_solutions_exam-2020-11-02-sol_19_0.png

_images/exams_2020-11-02_solutions_exam-2020-11-02-sol_21_0.png

_images/exams_2018-11-13_solutions_exam-2018-11-13-sol_35_0.png
province calls by prefixes sorted solution

30

25

20

10

0s

00
] 0461 mobile

prefixes

_images/exams_2018-11-16_solutions_exam-2018-11-16-sol_13_0.png

_images/example.png
A
Jupyter!

_images/exams_2018-11-13_solutions_exam-2018-11-13-sol_33_0.png
province calls by prefixes sorted solution

30

25

20

10

0s

00
] 0461 mobile

prefixes

_images/exams_2018-11-16_solutions_exam-2018-11-16-sol_32_0.png

_images/exams_2018-11-16_solutions_exam-2018-11-16-sol_35_0.png

_images/exams_2018-11-16_solutions_exam-2018-11-16-sol_21_0.png

_images/exams_2018-11-16_solutions_exam-2018-11-16-sol_24_0.png

_images/exams_2018-11-16_solutions_exam-2018-11-16-sol_39_0.png

_images/exams_2018-11-16_solutions_exam-2018-11-16-sol_6_0.png

_images/exams_2019-02-13_solutions_exam-2019-02-13-sol_44_0.png
srskesrekenss cale_nx SOLUTION

Legend

B201

B202
B217

—_—
—_—
B2ll ————
—_—
—_—

B301

Tione

Via Tione 3 Sarche Trento Trento
.) ° 12 Trento C.So ¢
Circonvallazione Autostazione Saone Centro Viale
Autostaz. Tre
65 Comm. Verona
Novembre

Tione
Via
Circonvallaz.

Ponte
Arche
Via
Ballino

Trento
Via
Brescia
4

Trento 1;\;?;;’ Trento
Trento Via Pedrotti Loc.Conotter
Loc. Sardagna
S.Antonio Civ.

104

_images/exams_2019-02-13_solutions_exam-2019-02-13-sol_66_1.png
sk color_hubs SOLUTION

Legend

B201

B202
B217

—_—
—_—
B2ll ————
—_—
—_—

B301

Tione

Via Tione 3 Sarche Trento Trento
.) : 12 Trento C.So ¢
Circonvallazione Autostazione Saone Centro Viale
Autostaz. Tre
65 Comm. Verona
Novembre

Tione
Via
Circonvallaz.

Ponte
Arche
Via
Ballino

Trento
Via
Brescia
4

Trento 1;\;?;;’ Trento
Trento Via Pedrotti Loc.Conotter
Loc. Sardagna
S.Antonio Civ.

104

_images/exams_2019-01-10_solutions_exam-2019-01-10_26_0.png

_images/exams_2019-02-13_solutions_exam-2019-02-13-sol_10_0.png
Legend

B2l] e—

Trento-Via Brescia 4
Sarch Centro comm.

Trento-Autostaz.

Trento Corso 3 Novembre

_images/exams_2019-02-13_solutions_exam-2019-02-13-sol_8_0.png
Trento-Via Brescia 4
Sarch Centro comm.

Trento-Autostaz. Trento Corso 3 Novembre

_images/exams_2019-06-10_solutions_exam-2019-06-10-sol_22_0.png
‘quantity

10000

000

5000

000

2000

ITEA real estates SOLUTION

l._,__,_

ALLOGGIO POSTOMACCHINA GARAGE MAGAZZINO NEGOZIO

ATRO.

SAA/ CABINAELETTRICA CANTINA
ATTIVITA SOCIALI

FFICio

_images/exams_2019-02-13_solutions_exam-2019-02-13-sol_6_0.png
Trento-Via Brescia 4
Sarch Centro comm.

Trento-Autostaz. Trento Corso 3 Novembre

_images/exams_2019-02-13_solutions_exam-2019-02-13-sol_77_0.png
Frequency counts.

Time histogram SOLUTION

0123450576 5 0N121314151617 1519202122232425
Time between stops in minutes

_images/exams_2019-06-10_solutions_exam-2019-06-10-sol_24_0.png
‘quantity

10000

000

5000

000

2000

ITEA real estates SOLUTION

l._,__,_

ALLOGGIO POSTOMACCHINA GARAGE MAGAZZINO NEGOZIO

ATRO.

SAA/ CABINAELETTRICA CANTINA
ATTIVITA SOCIALI

FFICio

_images/exams_2018-11-16_solutions_exam-2018-11-16-sol_9_0.png

_images/exams_2019-08-26_solutions_exam-2019-08-26-sol_52_0.png
‘common employees

SOLUTION

Sociology Law Sociology
Department pairs

sis
Humanities

Economics

ol
ois|

ago

_images/exams_2020-01-23_solutions_exam-2020-01-23-sol_25_1.png

_images/exams_2019-08-26_solutions_exam-2019-08-26-sol_28_0.png
professor roles

2

Professor roles per department SOLUTION

Humanities Economics Sociology Physics. Mathematics
eparments

_images/exams_2019-08-26_solutions_exam-2019-08-26-sol_40_0.png
oisi Sociology coGscl

Guest Professor Professor

Professor

Guest

Teaching

Research

Teaching Research

Research

Teaching

_images/exams_2020-01-23_solutions_exam-2020-01-23-sol_34_0.png
frequency
B

1

‘Statement references SOLUTION

€t wea B e @

Statement labels

m
™

_images/exams_2020-02-10_solutions_exam-2020-02-10-sol_23_0.png
domestic_animal

working_dog
bulldog shepherd_dog

_images/exams_2020-01-23_solutions_exam-2020-01-23-sol_28_1.png
24
WIE((1+0)=t>1=1)
wim: wif (P> Q)

20
Wi (140)=t
weq: Wit = ¢

18
term (t+0)
tpl:term (t+71)

16
term t
1t: term t

17
term O
tze: term O

_images/exams_2020-01-23_solutions_exam-2020-01-23-sol_32_0.png
frequency
B

1

‘Statement references SOLUTION

€t wea B e @

Statement labels

m
™

_images/exams_2019-07-02_solutions_exam-2019-07-02-sol_26_0.png
E

5

Categorie botteghe storiche SOLUTION

RISTORANTE HOTEL ALBERGO MAch_EmA | CPANFCO T CALZATURE FAUMACA AMENTAN PZZERA

_images/exams_2019-07-02_solutions_exam-2019-07-02-sol_28_0.png
E

5

Categorie botteghe storiche SOLUTION

RISTORANTE HOTEL ALBERGO MAch_EmA | CPANFCO T CALZATURE FAUMACA AMENTAN PZZERA

_images/exams_2020-08-24_solutions_exam-2020-08-24-sol_24_0.png
POMPA COMPLETA DI MOTORE (A.02.40.0010) SOLUTION

_images/exams_2020-08-24_solutions_exam-2020-08-24-sol_26_0.png
POMPA COMPLETA DI MOTORE (A.02.40.0010) SOLUTION

_images/exams_2020-07-17_solutions_exam-2020-07-17-sol_30_0.png
of exclusions by divisions (level 2) - SOLUTION

Saive, e’ Copond Whocssle Manuiscire o Montfactureof Réntal ond
aits and. rade, animal Tty s ansport | core ana leasing
entertainment exceptof production, ‘quipment refined actiities
activties motor hunting and nec petroleum
vehiclesand related vehicies and products
motorcycles service motorcycles

activities

Fining and
saquaculture

Pubjshing
activities

_images/exams_2020-07-17_solutions_exam-2020-07-17-sol_32_0.png
of exclusions by divisions (level 2) - SOLUTION

Saive, e’ Copond Whocssle Manuiscire o Montfactureof Réntal ond
aits and. rade, animal Tty s ansport | core ana leasing
entertainment exceptof production, ‘quipment refined actiities
activties motor hunting and nec petroleum
vehiclesand related vehicies and products
motorcycles service motorcycles

activities

Fining and
saquaculture

Pubjshing
activities

_images/exams_2020-11-02_solutions_exam-2020-11-02-sol_18_0.png

_images/exams_2020-11-02_solutions_exam-2020-11-02-sol_14_1.png

_images/exams_2020-11-02_solutions_exam-2020-11-02-sol_16_1.png

_images/exams_2020-06-16_solutions_exam-2020-06-16-sol_32_0.png
minutes.
cw BHENE Y

Disconnections SOLUTION

—maxgap
- time_away

— el

Luigi Mario

Princess Toadstool

_images/exams_2020-06-16_solutions_exam-2020-06-16-sol_34_0.png
minutes.
cw BHENE Y

Disconnections SOLUTION

—maxgap
- time_away

— el

Luigi Mario

Princess Toadstool

_images/exams_2020-02-10_solutions_exam-2020-02-10-sol_30_1.png
70000

0000

50000

0000

30000

20000

10000

Wordnet Relation frequency SOLUTION

Fyponym Hypernym Derivationally Member Member Instance Instance Antonym Substance Substance Attrbute
elsted " oloym meromym roloym meronym Hypeomym Foponym meronym holonym.

_images/B201.png
velocity (K/h)

2

B201 stops SOLUTION

Tione Zutlo
Autostaziors237

1815 0uperm.
L

1817:00

Saine
182000

Ponte.
srche
Autost

183200

Sarthe.
Centro
Comm

18:45:00

stops

Trento
sutostaz
19:10:00

_images/B202.png
E

=

2

B202 stops SOLUTION

velocity (k/h)

Sordagna Sardagna Sardagna Serdagna Trento Tento Trento Trento Trento Trento
%2500 Q. v20 Maso Loc. Via Maso. Loc.Conatter Via Autostaz
2% e2io0 S S Antonio Sordagna Pedrotts 06:37.00 Brestia 06:41.00
06:26:00 062800 %6:31.00 Qv 063400 4
04 06:32.00
06:33.00

stops

_images/bfs.jpg

_images/breakpoint.png
@ integer_sumpy X

mwn integer sum.py is a script to

s=0
for 1 in range(0, 1201):
s=s+1

print("The sum of the first 1200 integers is

_images/B301.png
velocity (k/h)

2

B301 stops SOLUTION

Trento Trento Trento_Trento Trento Trento Mattitidatieetirells Acqugaviva Besdeiibiiuminel Callgatigahatepietra Volabolano S5 Slario RoveretRovatareto
Autostaz Cso Vial Bartolamedfiale Man LocRonB75S.0Bx 115P@feria PosteBOSFOM. SE.0BQMEEL00 1815002 SIrIPUA00 Vie Via Via
17:35:00 Tre Verona 17:46.00 Verona 17:50.00 17 Sebrivestimenta 150000 Veccrd Sud 4 Manfrini Des Sioperi _TrentoBaratanion:
Novembre 17:44:00 Big 17:54:007:56:00 18.0RBAI 0015.06 OCCimiteral3 10.00 Tor 181800 1521001520400
174000 Center 150800 181600
17:48:00

stops

_images/argument_passing.png

_images/bt-leaves-numbers.png

_images/bt-leaves-numbers1.png

_images/bt-bin-search.png

_images/bt-height.png
Level

_images/bt-shapes.png
Binary tree

A binary tree is a tree data structure in which each node has at
most two children, which are referred to as the left child and the
right child.

Note: Two trees T and U having the same nodes, the same children for
cach node and the same root, are said to be different if a node u is a left
child of a node v in T and a right child of the same node in U.

T T Ty Level

—ee- 0

cee- 2

_images/bt-sum.png

_images/bt-tasks.png

_images/bt-tree-last-row.jpg

_images/capped-stack.png
discarded

~o

Vemma

00000

_images/bt-terminology-1.png
o Ais the tree oot @ D,E arechildren o Purple nodes are
e B,C are roots of of B leaves

their subtrees o Bis the parent of o The other nodes
o D, E are siblings D.E are internal nodes

_images/bt-terminology-2.png
- Depth of a node

The length of the simple path
from the root to the no-
de (measured in number of
edges)

ALevl———————————
The set of nodes having the
same depth

~ Height of the tree

The maximum depth of all its
leaves

Height of this tree

_images/codecompletion.png
pri|

© print

def print(value, ..., se

='\n', file=sys.stdout, flush=Fals

Prints the values to a stream, or to sys.stdout by
default.

Optional keyword arguments:

file: a file-like object (stream); defaults to the
current sys.stdout.

sep: string inserted between values, defaulta
space.

end: string appended after the last value, default

_images/complex-numbers-addition.png
Complex numbers are added by separately adding the real and imaginary parts of the summands.
That is to say:

(a+bi)+ (c+di) = (a+c)+ (b+d)i.
Similarly, subtraction is defined by

(a+bi) — (c+di) = (a—c) + (b— d)i.

_images/cc-by.png

_images/circular-queue-pseudocode.png
Queue

Queue based on circular array — Pseudocode

Queve
A Y Elements dequeue()

size % Current size | if size > 0 then

head %% Head of the queue temp « Alhead)

cap % Maximum size head ¢ (head + 1)%cap

Queve(self, dim)
self.A & new int[0...dim — 1]
self.cap dim
selfhead « 0
self .size & 0

top()

if size > 0 then
| return Afhead

5P - Da

size 4 size — 1
return temp

enqueue(v)
if size < cap then
Al(head + size)Yocap] v
L size ¢ size + 1

size()
| return size

isEmpty()
| return size=0

a structure 201

/11/21

62/ 60

_images/complex-numbers-equality.png
Equality [edit]
Two complex numbers are equal if and only if both their real and imaginary parts are equal. In symbols:

z1 =2z + (Re(z1) =Re(z2) A Im(21) = Im(2,)).

_images/complex-numbers-magnitude-1.png
The absolute value (or modulus or magnitude) of a complex number z = x + yi is

- VT

_images/complex-numbers-definition.png
A complex number is a number that can be expressed in the
form a + bi, where a and b are real numbers and i is the
imaginary unit which satisfies the equation 12 = ~1. In this
expression, a is the real part and b is the imaginary part of the
complex number.

Complex number - Wikipedia
https://en.wikipedia.org/wiki/Complex_number

_images/debug.png

_images/disi-unitn-en-logo.png
UNIVERSITY
OF TRENTO

y Department of Information
Engineering and Computer Science

_images/complex-numbers-magnitude-2.png

_images/complex-numbers-multiplication.png
Multiplication and division [edit]

The multiplication of two complex numbers is defined by the following formula:
(a+ bi)(c + di) = (ac — bd) + (bc + ad)i.

In particular, the square of the imaginary unit is -1:

P2 =ixi=—1

_images/exam