Exam - Wed 12, Jan 2022
Scientific Programming - Data Science Master @ University of Trento
Download exercises and solutions
Part A - Prezzario
NOTICE: this part of the exam was ported to softpython website
There you can find a more curated version (notice it may be longer than here)
Open Jupyter and start editing this notebook exam-2022-01-22.ipynb
You are going to analyze the dataset EPPAT-2018-new-compact.csv
, which is the price list for all products and services the Autonomous Province of Trento may require. Source: dati.trentino.it
DO NOT WASTE TIME LOOKING AT THE WHOLE DATASET!
The dataset is quite complex, please focus on the few examples we provide
We will show examples with pandas, but it is not required to solve the exercises.
[2]:
import pandas as pd
import numpy as np
pd.set_option('display.max_colwidth', None)
df = pd.read_csv('EPPAT-2018-new-compact.csv', encoding='latin-1')
The dataset contains several columns, but we will consider the following ones:
[3]:
df=df[['Codice Prodotto','Descrizione Breve Prodotto','Categoria','Prezzo']]
df[:22]
Pompa completa a motore Example
If we look at the dataset, in some cases we can spot a pattern (rows 3 to 8 included):
[4]:
df[3:12]
[4]:
Codice Prodotto | Descrizione Breve Prodotto | Categoria | Prezzo | |
---|---|---|---|---|
3 | A.02.40.0010 | POMPA COMPLETA DI MOTORE | NaN | NaN |
4 | A.02.40.0010.010 | fino a mm 50. | Noli e trasporti | 2.21 |
5 | A.02.40.0010.020 | oltre mm 50 fino a mm 100. | Noli e trasporti | 3.36 |
6 | A.02.40.0010.030 | oltre mm 100 fino a mm 150. | Noli e trasporti | 4.42 |
7 | A.02.40.0010.040 | oltre mm 150 fino a mm 200. | Noli e trasporti | 5.63 |
8 | A.02.40.0010.050 | oltre mm 200. | Noli e trasporti | 6.84 |
9 | A.02.40.0020 | GRUPPO ELETTROGENO | NaN | NaN |
10 | A.02.40.0020.010 | fino a 10 KW | Noli e trasporti | 8.77 |
11 | A.02.40.0020.020 | oltre 10 fino a 13 KW | Noli e trasporti | 9.94 |
We see the first column holds product codes. If two rows share a code prefix, they belong to the same product type. As an example, we can take product A.02.40.0010
, which has 'POMPA COMPLETA A MOTORE'
as description (‘Descrizione Breve Prodotto’ column). The first row is basically telling us the product type, while the following rows are specifying several products of the same type (notice they all share the A.02.40.0010
prefix code until 'GRUPPO ELETTROGENO'
excluded). Each
description specifies a range of values for that product: fino a means until to , and oltre means beyond.
Notice that:
first row has only one number
intermediate rows have two numbers
last row of the product series (row 8) has only one number and contains the word oltre ( beyond ) (in some other cases, last row of product series may have two numbers)
A1 extract_bounds
Write a function that given a Descrizione Breve Prodotto as a single string extracts the range contained within as a tuple.
If the string contains only one number n
:
if it contains
UNTIL
( ‘fino’ ) it is considered a first row with bounds(0,n)
if it contains
BEYOND
( ‘oltre’ ) it is considered a last row with bounds(n, math.inf)
DO NOT use constants like measure units ‘mm’, ‘KW’, etc in the code
Show solution[5]:
import math
#use this list to rmeove unneeded stuff
PUNCTUATION=[',','-','.','%']
UNTIL = 'fino'
BEYOND = 'oltre'
def extract_bounds(text):
raise Exception('TODO IMPLEMENT ME !')
assert extract_bounds('fino a mm 50.') == (0,50)
assert extract_bounds('oltre mm 50 fino a mm 100.') == (50,100)
assert extract_bounds('oltre mm 200.') == (200, math.inf)
assert extract_bounds('da diametro 63 mm a diametro 127 mm') == (63, 127)
assert extract_bounds('fino a 10 KW') == (0,10)
assert extract_bounds('oltre 156 fino a 184 KW') == (156,184)
assert extract_bounds('fino a 170 A, avviamento elettrico') == (0,170)
assert extract_bounds('oltre 170 A fino a 250 A, avviamento elettrico') == (170, 250)
assert extract_bounds('oltre 300 A, avviamento elettrico') == (300, math.inf)
assert extract_bounds('tetti piani o con bassa pendenza - fino al 10%') == (0,10)
assert extract_bounds('tetti a media pendenza - oltre al 10% e fino al 45%') == (10,45)
assert extract_bounds('tetti ad alta pendenza - oltre al 45%') == (45, math.inf)
A2 extract_product
Write a function that given a filename
, a code
and a unit
, parses the csv until it finds the corresponding code and RETURNS one dictionary with relevant information for that product
Prezzo ( price ) must be converted to float
implement the parsing with a
csv.DictReader
, see exampleas encoding, use
latin-1
[6]:
# Suppose we want to get all info about A.02.40.0010 prefix:
df[3:12]
[6]:
Codice Prodotto | Descrizione Breve Prodotto | Categoria | Prezzo | |
---|---|---|---|---|
3 | A.02.40.0010 | POMPA COMPLETA DI MOTORE | NaN | NaN |
4 | A.02.40.0010.010 | fino a mm 50. | Noli e trasporti | 2.21 |
5 | A.02.40.0010.020 | oltre mm 50 fino a mm 100. | Noli e trasporti | 3.36 |
6 | A.02.40.0010.030 | oltre mm 100 fino a mm 150. | Noli e trasporti | 4.42 |
7 | A.02.40.0010.040 | oltre mm 150 fino a mm 200. | Noli e trasporti | 5.63 |
8 | A.02.40.0010.050 | oltre mm 200. | Noli e trasporti | 6.84 |
9 | A.02.40.0020 | GRUPPO ELETTROGENO | NaN | NaN |
10 | A.02.40.0020.010 | fino a 10 KW | Noli e trasporti | 8.77 |
11 | A.02.40.0020.020 | oltre 10 fino a 13 KW | Noli e trasporti | 9.94 |
A call to
pprint(extract_product('EPPAT-2018-new-compact.csv', 'A.02.40.0010', 'mm'))
Must produce:
{'category': 'Noli e trasporti',
'code': 'A.02.40.0010',
'description': 'POMPA COMPLETA DI MOTORE',
'measure_unit': 'mm',
'models': [{'bounds': (0, 50), 'price': 2.21, 'subcode': '010'},
{'bounds': (50, 100), 'price': 3.36, 'subcode': '020'},
{'bounds': (100, 150), 'price': 4.42, 'subcode': '030'},
{'bounds': (150, 200), 'price': 5.63, 'subcode': '040'},
{'bounds': (200, math.inf),'price': 6.84, 'subcode': '050'}]}
Notice that if we append subcode
to code
(with a dot) we obtain the full product code.
[7]:
import csv
from pprint import pprint
def extract_product(filename, code, measure_unit):
raise Exception('TODO IMPLEMENT ME !')
pprint(extract_product('EPPAT-2018-new-compact.csv', 'A.02.40.0010', 'mm'))
assert extract_product('EPPAT-2018-new-compact.csv', 'A.02.40.0010', 'mm') == \
{'category': 'Noli e trasporti',
'code': 'A.02.40.0010',
'description': 'POMPA COMPLETA DI MOTORE',
'measure_unit': 'mm',
'models': [{'bounds': (0, 50), 'price': 2.21, 'subcode': '010'},
{'bounds': (50, 100), 'price': 3.36, 'subcode': '020'},
{'bounds': (100, 150), 'price': 4.42, 'subcode': '030'},
{'bounds': (150, 200), 'price': 5.63, 'subcode': '040'},
{'bounds': (200, math.inf),'price': 6.84, 'subcode': '050'}]}
#pprint(extract_product('EPPAT-2018-new-compact.csv', 'A.02.40.0020', 'KW'))
#pprint(extract_product('EPPAT-2018-new-compact.csv', 'B.02.10.0042', 'mm'))
#pprint(extract_product('EPPAT-2018-new-compact.csv','B.30.10.0010', '%'))
A3 plot_product
Implement following function that takes a dictionary as output by previous extract_product
and shows its price ranges.
pay attention to display title and axis labels as shown, using input data and not constants.
in case last range holds a
math.inf
, show a>
signif you don’t have a working
extract_product
, just copy paste data from previous asserts.
>>> extract_product('EPPAT-2018-new-compact.csv', 'A.02.40.0010', 'mm')
[8]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
def plot_product(product):
raise Exception('TODO IMPLEMENT ME !')
product = extract_product('EPPAT-2018-new-compact.csv', 'A.02.40.0010', 'mm')
#product = extract_product('EPPAT-2018-new-compact.csv', 'A.02.40.0020', 'KW')
#product = extract_product('EPPAT-2018-new-compact.csv', 'B.02.10.0042', 'mm')
#product = extract_product('EPPAT-2018-new-compact.csv','B.30.10.0010', '%')
plot_product(product)
Part B
Open Visual Studio Code and start editing the folder on your desktop
For running tests: open Accessories -> Terminal
B1 Theory
Write the solution in separate ``theory.txt`` file
B1.1
Given a list L
of \(n\) elements, please compute the asymptotic computational complexity of the myfun
function, explaining your reasoning.
[9]:
def myfun(L):
n = len(L)
sums = {}
for i in range(n):
sums[i] = 0
for j in range(i):
sums[i] += j
for k in range(n):
sums[k] += k
return sums
B1.2
Describe the differences between the Depth-First and the Breadth-First Search algorithms for visiting graphs.
Then, apply BFS to the graph below (write down the visit order only).
B2 find_couple
Implement following find_couple
method.
def find_couple(self, a, b):
""" Search the list for the first two consecutive elements having data
equal to provided a and b, respectively. If such elements are found,
the position of the first one is returned, otherwise raises LookupError.
- MUST run in O(n), where n is the size of the list.
- Returned index start from 0 included
"""
Testing: python3 -m unittest linked_list_test.FindCoupleTest
B3 swap
Implement the method swap
:
def swap(self, i, j):
""" Swap the data of nodes at index i and j. Indeces start from 0 included.
If any of the indeces is out of bounds, rises IndexError.
NOTE: You MUST implement this function with a single scan of the list.
"""
Testing: python3 -m unittest linked_list_test.SwapTest
[ ]: